SACRO: Semi-Automated Checking Of
Research Outputs: Technical Deliverables

Jim Smith*!, Richard J. Preen!, Maha Albashir!,
Alba Crespi-Boixader?, Chris Cole?, James Liley®, Simon Rogers*,
Yola Jones*, Benjamin Butler-Cole®, and Simon Davy®

1School of Computer Science, University of the West of England
2School of Medicine, University of Dundee
3Department of Mathematical Sciences, University of Durham
4NHS National Services Scotland
°Bennett Institute, University of Oxford

October 31, 2023

Abstract

We report on the software deliverables produced by the DARE UK
Driver project Semi Automated Checking of Research Outputs (SACRO).
This project brought together Trusted Research Environments (TREs)
with software developers and Machine Learning researchers and practi-
tioners to produce a suite of tools to address (i) a current bottleneck in
checking research outputs for privacy leakage, and (ii) an impending is-
sue that TREs not not have the resources or skills to risk-assess trained
machine learning models.

The tools produced broadly split into three parts. The first is a li-
brary of ‘drop-in’ like-for-like replacements for researchers, that replace
commonly used query commands in Python/R and Stata with acro ver-
sions that conduct and report on disclosure risk assessments at the same
time as reporting the results of the original queries.

The second is a viewer for TRE output checkers to use that ingests
the requested outputs alongside the description of their disclosure risk to
facilitate the checking and release process.

The third component is a range of tools for (i) encouraging researchers
to consider disclosure risk throughout their Machine Learning workflow,
(ii) running a range of different types of ‘attacks’ on trained models and
(iii) co-ordinate running attacks on a model a researcher has requested to
egress, and produce a report and recommendation for TRE staff.

*To whom correspondence should be addressed. email: james.smith@uwe.ac.uk

1 Introduction

Statistical agencies and other custodians of secure facilities such as Trusted Re-
search Environments (TREs) [5] provide researchers with access to confidential
data under the ‘Five-Safes’ framework [11]. This enforces five orthogonal layers
of safety procedures, and the last requires explicit checking of research outputs
for disclosure risk. This can be a time-consuming and costly task, requiring
skilled staff. This paper discusses the development of an open source tool for
automating the statistical disclosure control (SDC) of routine research outputs.
The goal is to make the clearance process more efficient and timely, and to allow
the skilled checkers to focus their attention on the less straightforward cases.
The purpose of the tool (SACRO, for Semi-Automated Checking of Research
Outputs) is to assist researchers and output checkers by distinguishing between
research output that is safe to publish, output that requires further analysis,
and output that cannot be published because of substantial disclosure risk.
This work builds two prior streams of work:

1. A previous Eurostat-funded project [3,4] in which Green, Ritchie and
Smith developed a proof-of-concept prototype for the proprietary Stata
software.The SACRO project enacted a step change in functionality, in-
volving TRE staff in the co-design and evaluation of:

e The implementation of a Python toolkit.

e An extensible multi-language platform with interfaces familiar to
users of popular statistical tools.

e Package ‘Skins’ in Stata and the Rlanguage, demonstrating cross-
language support (see section 3)

e A platform-independent viewer tool for TRE output checkers to view
requested outputs alongside the automatically generated risk report
(see section 4).

e An open source repository with examples, help, documentation, etc.

2. The DARE project Guidelines and Resources for AI Model Access from
TrusTEd Research environments (GRAIMatter) [6]. The SACRO project
builds on the software produced in that project to include:

e A greater number of ‘attacks’ on trained machine learning models,
including new ones that specifically link to concepts from ‘traditional
statistical disclosure control’.

e A formalisation of different ways that a user may present a model and
their data sets, with simply configurable scripts to support testing
and decision making for different ‘user stoies’ (see section 5).

2 Background

The Five Safes framework [11] is a set of principles that enable services to
provide safe research access to their data and has been adopted by a range of
TREs, including the Office for National Statistics (ONS), Health Data Research-
UK (HDR-UK), and the National Institute for Health Research Design Service
(NIHR), as well as many others worldwide.

Essentially, these comprise separate considerations of safety in data, projects,
people, settings and outputs. Ensuring the last of these, ‘safe outputs’ is a com-
plex and often costly human labour-intensive process. Automated output check-
ing aims to improve the rigour and consistency of the output disclosure control
process and reduce human workload by automatically identifying, reporting,
and (optionally) suppressing disclosive outputs where possible and categorising
outputs as ‘safe’ or ‘unsafe’. ‘Safe’ outputs requiring no or minimal further
changes can be expedited through the clearing process whereas ‘unsafe’ outputs
can be prioritised for human review [10].

A small number of SDC tools have been produced to assist in the process
of achieving ‘safe outputs’, such as tauArgus and sdcTable!', however these are
primarily designed for users such as National Statistic Institutes as they require
expert knowledge of SDC to use effectively. Moreover, they are designed for
tabular outputs, and do not cover the range of statistics produced by researchers

With the aim of improving the efficiency of the process, and (where applica-
ble) reducing the amount of user training required, a recent Eurostat project [3]
developed a proof-of-concept prototype in Stata where primary disclosure is
regulated by a set of simple rules. For example, requiring that summary statis-
tics are computed on at least a minimum number of observations guarantees a
degree of uncertainty with respect to any individual respondent. ‘Dominance’
rules obscure the reconstructibility of large respondent values where the contri-
bution to a statistic is dominated by only a few individuals. For example, the
p%-rule sorts the N observations by magnitude and checks whether the sum of
the smallest N — 3 observations is at least p% of the largest observation. The
NK rule checks that the largest N observations contribute less than K% of the
total. Also, not all aggregation statistics are permitted: reporting minima or
maxima values of a subgroup are prohibited, and regressions are protected by
checking that the Residual degrees-of-freedom exceeds a minimum threshold.

Building on the experience of the initial proof-of concept, funding was se-
cured from the UK Research Council’s DARE initiative? for the project: Semi
Automated Checking of Researcher Outputs (SACRO) which involves:

e Computer scientists with backgrounds ranging from Al research to com-
mercial software development.

e A range of TREs as co-designers of a toolset.

IRespectively, https://github.com/sdcTools/tauargus and https://github.com/
sdcTools/sdcTable
2https://dareuk.org.uk/

e SDC theorists and statisticians to provide a conceptual framework for

handling different types of output and providing guidance to researchers
and output checkers.

e Public Involvement and Engagement specialists and groups to develop a

consensus statement around the use of (semi)-automation in disclosure
control

e Researchers from a previous DARE project examining the output checking

of machine learning models trained on sensitive data within a TRE [6].

In this paper we report on the principal tools developed within the SACRO

project, specifically:

3

1. A toolkit for researchers to use within TREs that produces automated

reports on disclosure risk with minimal changes to their practice - simply
prefixing common commands with the word ‘acro’.

. Explicit support for researchers to reduce the number of disclosive outputs

they request.

. Cross-language support: with exemplar interfaces provided for Stata and

R.

. Support for the output types that our TRE partners tell us form the

majority of requested releases.

. A stand-alone viewer for TRE output staff to facilitate rapid, informed,

and audited, decision making.

. A revised guide incorporating theoretical developments, directly linked to

its implementation in SACRO.

The SACRO toolkit

SACRO is composed of three parts which may be deployed independently: the
main ‘ACRO-engine’; a stand-alone viewer, and ‘AI-SDC’ - support for disclo-
sure control of machine learning models (described elsewhere).

3.1 Design Philosophy

The operational design philosophy is extensively documented in [4], who studied
the characteristics that an automated solution needs to have to be feasible,
effective, and a positive choice for users. Essential criteria are that it should be:

e Acceptable to users, output checkers and TRE managers;

e Able to implement an organisation’s business rules for primary and sec-

ondary disclosure, which may vary across datasets or users;

Comprehensive, even if the automated tool’s response is “I don’t know so
this needs manual checking";

Consistent, providing the same results across different studies within a
TRE, and across TRESs;

e Able to support exceptions under principles-based regimes;
e Scalable over users and outputs.

Key operational requirements were for the tool to work in different technical
environments, and to be easily updated through well understood mechanisms.
This meant separating the software itself (distributed through a recognised chan-
nel®, from the specification of a given TRE’s risk appetite (held in a human and
machine readable and editable file).

Acceptability to users was identified as the most crucial element. If re-
searchers and output checkers see the tool as something that makes their life
better and easier, then they are more likely to use it effectively. Hence, designing
the user interface was identified as a separate workstream in SACRO, and given
the same resources as the design and implementation of the output-checking
component. This is also one reason why SACRO set up a large network of
potential users and tests (see Sec. 7 below).

The ‘proof-of-concept’ version of ACRO did not address secondary disclo-
sure (such as checking for differencing across tables), for two reasons. First,
business rules for secondary checking are often not clear or comprehensive. Sec-
ond, ACRO/SACRO works by intercepting commands and assessing disclosure
risk at the time the output is being produced. Analysing results post-hoc is a
considerably harder problem, requiring the researcher to produce a lot more in-
formation and also locate the other outputs to be compared. Although SACRO
does not currently (as of July 2023) carry out secondary disclosure review, we
are investigating how to at least flag potential differencing risks across the set
of outputs from a research ‘session’, and in future, create a library of outputs
which might allow secondary disclosure to be assessed, even if only partially.

3.2 Workflow

ACRO [8] is an open source toolkit (MIT License) that provides a light-weight
‘skin’ that sits over well-known analysis tools, in a variety of languages re-
searchers might use. The process is illustrated in Fig. 1. This adds functional-
ity to identify potentially disclosive outputs against a range of commonly used
disclosure tests and report to researchers and TREs reasons why outputs should
not be released ‘as-is’. It creates simple summary documents TRE staff can use
to streamline their workflow.
ACRO has been designed with the following aims:

3for example, PyPi (https://pypi.org or CRAN (https://cran.r-project.org)

—

Light—We.ight Disclosure
Translation Control Checks
] Functions (Python) Standard Python
Analysis commands Libraries:

prefixed by acro Tests:

o Python
X Lo | dommance Pandas
SDC output - ! for tabl
. I R s

N f freed
Researcher ’u.. or freedom CEnTmrr s
Seel) Applies: for regression
St > .| - cell suppression Vt‘
inalise Tt ! - others .
Finalise I:l "0 ‘\
—_— K4 -
0 .
B Reads *+
Q “
o -
o : :
Approve/Discuss/Reject Excel spreadsheet or JSON file ‘ITREfspecific
S LEEEEEEE R EEEEEEEEEE. & with details and recommenda- file detailing
tions for each requested output risk appetite

TRE Staff

Figure 1: Schematic illustration of ACRO.

e Reducing barriers to adoption via a front-end application programming
interface (API) that is similar to those already commonly used by re-
searchers in their favoured language.

e Providing researchers with: immediate feedback on the results of dis-
closure checks (on-screen alongside their query results); facilities to add
comments or exception requests, and control over what is submitted for
review, e.g., removing disclosive outputs if they use feedback to design
non-disclosive ones.

e Having a single back-end code base constituting a single source of truth for
performing checks, with extensibility for different languages and ongoing
support and consistency.

e Providing easy to understand help and documentation.

In practice, researchers prepare their data and statistical queries in the usual
way, in their preferred language, using common commands prefixed by ‘acro’.
The lightweight ACRO translation functions then call the Python back-end,
which executes the queries and performs the requisite output checks. The results
of the checks, and the queries are immediately displayed to the researcher, and
full details are stored in a list. When the user calls acro.finalise() to end
their session, outputs and all SDC details are saved to file for review by a TRE
output checker. A schematic illustration of the ACRO workflow is shown in
Figure 1 and some notebooks demonstrating example code usage and output
are available via the ACRO project wiki.

4https://github.com/AI-SDC/ACRO/wiki

3.3 Checks Implemented

For tabular data (e.g., cross tabulation and pivot tables), we prohibit the report-
ing of the maximum or minimum value in any cell that represents a sub-group
of one or more contributors. Moreover, we suppress, and report the reason, the
value of the aggregation statistic (mean, median, variance, etc.) for any cell
deemed to be sensitive. ACRO currently supports the three most common tests
for sensitivity: ensuring the number of contributors is above a frequency thresh-
old, and testing for dominance via p% and NK rules. ACRO builds a series
of suppression masks, which indicate which cells are to be suppressed for each
check. A summary outcome table indicating which suppression rule was applied
to each cell is presented to the researcher (the grey box in Fig. 2, alongside
the query results. For regressions, e.g., linear, probit and logit regression, the
tests verify the number of degrees of freedom exceeds a threshold. Immediate
feedback on all these checks is designed to support researchers to improve their
practice and so reduce the SDC bottleneck by making fewer disclosive requests

As of October 2023 we support the checking of graphical plots in two forms:
Survival plots (with accompanying frequency tables) - based on the statsmodels
‘SurvfuncRight’ method, and histograms based on the pandas ‘DataFrame.hist()’
method. Having establsihed the method supporting plots - in this case both dis-
play the same risks as frequencies- other graphical outputs would be straightfor-
ward to support where the results they demonstrate map onto well understood
types of analyses

As noted above, all of these tests and checks are configurable according to
the TRE’s risk appetite. The data custodian, e.g., TRE staff member, specifies
the parameter values used for the output checks in a YAML?® configuration file,
which is loaded upon ACRO initialisation. The default ACRO parameters are
shown in Table 1. Future releases will offer the option to over-ride these on a
dataset, or even attribute level.

Table 1
ACRO DEerauULT PARAMETERS FOR SENSITIVITY TESTS

Description Parameter Value
Min frequency threshold for tabular data safe_threshold 10.0
Min degrees-of-freedom for analytical stats safe_dof_threshold 10.0
N parameter in NK test safe_nk_n 2.0
K parameter in NK test safe_nk_k 0.9
Min ratio for p% test safe_pratio_p 0.1

3.4 The SACRO Python ‘Engine’

Python is a popular multi-platform language widely used for data analysis and
machine learning. PyPI provides a simple package management system for dis-

Shttps://yaml.org

tributing open source Python libraries. Pandas and Statsmodels® are industry-
standard, mature, popular, and well-supported python packages for data analy-
sis, statistical testing, and statistical data exploration. Pandas is currently used
by more than 55% of all Python users [9] and there are many web-sites and user
groups providing help with formulating queries.

The use of Python as the primary implementation therefore enables the
leveraging of existing expertise and community support with these packages so
that the ACRO front-end can be as similar to the API researchers already know
and trust, and further facilitates the rapid development of disclosure checking
functionality on the back-end. As the PyPI distribution system is simple and
allows the use of semantic versioning, it supports a rapid and iterative develop-
and-deploy strategy to provide continuing functionality and improvements.

For example, the current version of ACRO may be installed [or updated] as
simply as:

pip install [-—upgrade] acro

The currently implemented methods are listed below, split into analysis com-
mands, and sessions management commands. For more details see the ACRO
project documentation”.

3.4.1 Analysis commands for Researchers

These are implemented via the use of multiple inheritance from Pandas and
Statsmodels. For making tables, the relevant methods are:

crosstab(index, columns|, values, rownames, ...|)
Compute a simple cross tabulation of two (or more) factors,
with options for hierarchies in rows/columns and multiple aggreagation
functions.
Same API as pandas.crosstab.

pivot_table(data[, values, index, columns, ...|)
Create a spreadsheet-style pivot table as a DataFrame.
Same API as pandas.pivot _table.

and for regression analysis:

logit(endog, exog[, missing, check rank])
Fits Logit model.
Same API as statsmodels.discrete.discrete model.Logit.

logitr(formula, datal, subset, drop cols])
Fits Logit model from an R-style formula and DataFrame.
Same API as statsmodels.formula.api.logit.

Shttps://github.com/pandas-dev/pandas and https://www.statsmodels.org/stable/
index.html respectively
"https://ai-sdc.github.io/ACRO/

ols(endog|, exog, missing, hasconst|)
Fits Ordinary Least Squares Regression.
Same API as statsmodels.regression.linear model.OLS.

olsr(formula, data[, subset, drop cols|)
Fits Ordinary Least Squares Regression from an R-style formula and DataFrame.
Same API as statsmodels.formula.api.ols.

probit(endog, exog[, missing, check rank])
Fits Probit model.
Same API as statsmodels.discrete.discrete model.Probit.

probitr(formula, data[, subset, drop _cols])
Fits Probit model from an R-style formula and DataFrame.
Same API as statsmodels.formula.api.probit.

We currently support two forms of graphical outputs:

surv_func(time,status,output,...)
Fits Survival model e.g Kaplan-Meier wiht option for plots, frequency
tables or both.
Same API as statsmodels.Survfuncright.

hist(data,column,by,...)
Produces a histogram. Same api as pandas.DataFrame.hist()

3.4.2 Session Management Commands

ACROQ) (config,suppress)
Creates an ACRO session object with optional parameters for a config
(risk appetite) filename
and whether disclosive tables should have suppression applied (default
False).

print_outputs()
Prints the current results dictionary - i.e., the outputs that would be sent
for checking.

remove_output(key)
Removes an output from the results dictionary.

rename_output(key, newname=)
Assigns a new (ideally more self-explanatory) name to an output from the
results dictionary.

add_comments(key,text)
Allows researcher to add a description for an output

add_exception(key,text)
Allows a user to request and justify an exception to strict rules-based
checking.

» safe_table = acro.crosstab(
df .recommend, df.parents, values=df.children, aggfunc="mean")
» print(safe_table)

INFO:get_summary:fail;
threshold: 4 cells may need suppressing

INFO:outcome_df:

parents great_pret pretentious wusual
recommend

not_recom ok ok ok
priority ok ok ok
recommend threshold threshold threshold
spec_prior ok ok ok
very_recommend threshold ok ok

INFO:acro:add(): output_1

grant_type great_pret pretentious wusual

recommend

not_recom 1440 1440 1440
priority 858 1484 1924
recommend 0 0 0
spec_prior 2022 1264 758
very_recom O 132 196

Figure 2: Example ACRO query for the ‘nursery’ data(top), with immediate
disclosure control reporting (middle, grey background - pink onscreen) followed
output (bottom). This 'researcher-view’ corresponds to the top image in the
viewer screenshots

custom_output(filename,description)
Adds a file containing output from unsupported analysis to an ACRO
session for inclusion in outputs shown in viewer.

finalise(directory name, format)
Creates a results file for checking in the desired format(json or alsz).

An example ACRO query run on the nursery admission dataset® and its
output is shown in Fig. 2. This is the ‘researchers-view’ of the output at run-
time. The corresponding ‘TRE-view’ is shown in the top screenshot in Fig. 3.
This example does not have an aggregation function so dominance rules are not
applied, otherwise they would also show in the ‘INFO’ section of the report
in any relevant cells. Note that if the user starts their session with acro=
ACRO(suppress=True) then any disclosive cells would have their values set to
NaN

8https ://www.openml.org/search?type=data&sort=runs&id=1568&status=active

10

3.5 The R interface to ACRO

The R front-end is an example of cross-language support. It provides a set of
wrapper functions that execute Python back-end checking via the reticulate®
package, which provides automatic conversations for many types, e.g., R data
frame to Pandas DataFrame.

A session is created when the acro package is called source("../acro.R")
and thereafter the acro methods work as callable functions with the prefix acro_
e.g., acro_rename_output (output5, "xy-plot") etc., and to end a session the
user calls acro_finalise(results_dir,‘‘json")

For regressions, the common R 1m() and glm() functions were shadowed
with equivalent versions implemented as acro_1m() and acro_glm(), respectively.
For tabular data, the dplyr'® package is commonly used within R, however no
simple cross tabulation or pivot table functions are provided; instead various
combinations of groupby() and summarize() etc. are used. Therefore, at this
stage of development, the Python cross tabulation and pivot table functions
were directly interfaced with acro_crosstab() and acro_pivot_table().

We support the Rtable() command for simple tables of frequencies (contin-
gencies) with that command’s parameters being automatically mapped on to
the equivalent acro.crosstab() parameters.

Finally , to provide more help we provide pass through access to the extensive
help on acro commands available in Python via the function acro_help(command).

Update: As of October 2023 an Rpackage is being finalised for submission
to CRAN allowing one-click installation of the Rinterface and the underpinning
python infrastructure.

3.6 Stata Interface

This makes extensive use of Stata’s SFIToolkit library to manage a python ses-
sion, transfer data in memory from stata to a Pandas dataframe in the python
session, and results back to the Stata window. A simple acro.ado file defines
a new function acro which takes as parameters either one of the ACRO ses-
sion management methods (adding init() to start a session) or the name of
a standard Stata function such as table, regress etc. Stata’s inbuilt parsing
functions are used to separate out the parts of command and pass them as lists
to a python function parse_and_run() which handles the rest of the translation
between the two languages.

4 SACRO Viewer for Output Checking

We have also created an open-source platform-independent stand-alone viewer
for output checkers to use to: view outputs and their risks; make decisions with
reasons (all recorded for auditing purposes); and produce zipped packages of files

9https://github.com/rstudio/reticulate
Ohttps://github.com/tidyverse/dplyr

11

for release [7]. Figure 3 illustrates two screenshots from the version currently
(July 2023) being evaluated by TREs.

The SACRO Outputs Viewer runs on Windows, Linux (Ubuntu/Debian),
and macOS. It is packaged using standard tooling (MSI on Windows and .deb on
Linux) and uses the Electron browser and is written in JavaScript and Python.
The Windows/Linux installers bundle all dependencies, including JavaScript
and Python runtimes.

The viewer supports and renders a range of different file types for results from
unsupported queries. A separate script lets TRE staff create an ACRO session
from a set of output files in a directory, and hence use the viewer for making
and recording decisions, even if the researcher has not used ACRO during their
analysis. Automated disclosure risk analysis is not provided in those cases.

5 Risk Assessment of Trained Machine Learning
Models

Risk Assessment of Trained Machine Learning Models is supported via the
GitHub repository https://github.com/AI-SDC/AI-SDC, with documentation
at https://ai-sdc.github.io/AI-SDC/.

The package is hosted on PyPi and can be installed via the command pip
install aisdc.

This repository contains collection of tools and resources for managing the
statistical disclosure control of trained machine learning models. For a brief
introduction to the underlying resources developed during the GRAIMatter
project, see [12].

This code has been extensively refactored during SACRO, in particular in-
formed by an increasing number of requests to support TREs where researchers
has presented models of egress with varying amount of supporting information.

5.1 User Guides

In response to that practice ‘on the ground’; and to developments elsewhere in
the Machine Learning field, we created a taxonomy of different ‘user stories’,
illustrated in Fig. 4.

A collection of user guides can be found in the ‘user stories’ folder of this
repository. These guides include configurable examples from the perspective of
both a researcher and a TRE, with separate scripts for each. Instructions on
how to use each of these scripts and which scripts to use are included in the
README of the https://github.com/AI-SDC/AI-SDC/user_stories folder.

The repository contains the following directories:

e ‘aisdc’: the main code for the package:

— ‘attacks’ Contains a variety of privacy attacks on machine learning
models, including membership and attribute inference.

12

i S SACRO Outputs Viewer Release and download
[output_0 crosstab table Output type crosstab table
[output_3 ols regression
) output_5 probit regression ACRO status Fail (threshold: 4 cells may need suppressing)
[output_6 logit regression
Comments « Please let me have this table!
[pivot_table pivot_table table
« 6 cells were suppressed in this table
() output_7 custom
Exception request
Review You cannot approve this output until you add a comment.
‘ Approve Reject
Review comments on output_0:
output_0_0.csv Open file
recommend great_pret pretentious usual
not_recom 1440 1440 1440
priority 858 1484 1924
recommend ‘ 0 ‘ 0 2 ‘
spec_prior 2022 1264 758
[ece SACRO Outputs Viewer
S SACRO Outputs Viewer Feiree
() output 0 crosstab table X v ACRO risk profile
[output 3 ols regression /.
D output 5 probit regression </ These results were generated with the following ACRO risk profile:
[0 output_6 logit regression / safe_threshold 10
[0 pivot_table pivot_table table ./ safe_dof_threshold 10
B output7 custom safe_nk_n N
safe_nk_k 09
safe_pratio_p 01
check_missing_values False
pivot_table
Created at 20 July 2023 at 21:39
Output type pivot_table table
ACRO status o
Review comments on pivot_table:
passes tests
pivot_table_0.csv Open file
mean std
children children
parents
great_pret 3.1284722222222223 2.246331573376306
pretentious 3.1412037037037037 2.2620552885466663
usual 317361111M11M112 2.222488041554373

Figure 3: Two screenshots of viewer. The left hand column shows list of files
requested. In top image, colouring of file names suggests which files require
special attention. In lower image background colour-coding and tick/cross sym-
bols show decisions made by output checker. Top image shows checker viewing
table that fails disclosure tests, with problematic cells highlighted in red. Bot-
tom shows acceptable table. Also in this image the top right hand panel shows
option to view TRE ‘risk appetite’ expanded.

13

$3A

éeiep
BUIUEIL JiaU} PBAES 10 “Uofauny
(Joseajai jsenbal au} BIA aselR)
pajsanbal JauaIeasal 5] Se)

83k

8 AHOLS 9 AMOLS
d3asn ¥asn

S3A cewp butsa) ON
L AYOLS pue Buues aup u spdues
u3sn
NMONYNN
ON &(uonauny Jo 3y e

Buipno.d ‘6'3) Buissa0.0-610
2181 J0 UoNLISE PBIEIE B
papinoid Jasn ey se

$3A ON

ze1ep Buiuies a2y 40
Tdos € papinoid 10 ‘138iq0 {o6iET
B Ul e1ep buluien 1iay] paddem
J8yoIessal By} seH

ON

alge
ja0.e1 & U ejep Buiuien sy paddest
J8U21B353) B} SEH

25582 BDOYYBIES BU) Buisn spou
& papIA0Id JaUDIESSaI BU) SEH

ON

$3A

cwyonie
Glenud filenualaup e Jing usaq sel
DIy [BpOW BU} S|

ON

$3A

1uspyueg 15837

Joyosesses
/01 UORR WO} 2.0
sa1jnbaJ 3 - Incino,
sonpoud jouue)

1UPYUOD 150N

) uoisioag ul

uowAd Jo Y U
19POLW JjaL 1IN SBY JaL2Ieasal
aU) J1 3IgeIfEAE 21 1) SUled

uoulid Buisn epouw
JIBU 1ING SBY JBUBIESSI AU 4
) aigenene Auo aie leyl suled -

A3X

Taxonomy of models and evidence to support assessment

Figure 4

14

— ‘preprocessing’ Contains preprocessing modules for test datasets.

— ‘safemodel’ The safemodel package is an open source wrapper for
common machine learning models. It is designed for use by re-
searchers in TREs where disclosure control methods must be imple-
mented. Safemodel aims to give researchers greater confidence that
their models are more compliant with disclosure control. Currently
there are wrappers for:

* The sklearn implementation of DecisionTreeClassifier().

* The sklearn implementation of RandomForestClassifier().

* The sklearn implementation of SupportVectorClassifier(), using
a differential private implementation.

* Artificial Neural Networks created using the Keras/Tensorflow
ecosystem. In this case the SafeKerasModel() class enforces the
use of a differentially private optimiser (from the tensorflow-
privacy package), and removes the optimizer object prior from
the model saved for egress.

In addition the safemodel classes perform a range of checks to make
sure that users have not inadvertently (or otherwise) changed their
models since they were created by the fit () method.

e ‘docs’ Contains Sphinx documentation files.

e ‘example notebooks’ Contains short tutorials on the basic concept of
“safe XX" versions of machine learning algorithms, and examples of some
specific algorithms. These are in the form of Jupyter notebooks which may
be viewed on GitHub or downloaded and run locally for a more interactive
experience.

e ‘examples’ Contains examples of how to run the code contained in this
repository including:
— How to simulate attribute inference attacks ‘attribute inference example.py’.

— How to simulate membership inference attacks:
Worst case scenario attack ‘worst case attack example.py’.

— LIRA scenario attack ‘lira_attack example.py’.
An implementation of the Likelihood Ratio Attack from [1]

— Integration of attacks into safemodel classes
‘safemodel attack integration bothcalls.py’.

e ‘risk examples’ Contains hypothetical examples of data leakage through
machine learning models as described in the [6].

e ‘tests’ Contains unit tests.

15

6 Linking theory and implementation

As part of the project, the SACRO team committed to review and re-develop
the theory and operational guidelines for output SDC. The aim was threefold;
first, to bring together key points from the OSDC literature (and fill in some of
the theoretical gaps) to provide an integrated guide to both theory and practice
of output checking; second, to develop a new approach to OSDC based on
classifications into groups (see [2], for details); third, to explicitly link theory to
operational rules and their implementation in manual and automatic checking
regimes. The third aim is essential to demonstrating that SACRO is not seen as
a ‘black box’ implementing its own rules, but is fully integrated into core theory.
It is also important for showing how manual and automatic output checking
necessarily differs. For example, dominance checks are almost impossible for
a human, but straightforward for computers; on the other hand, computers
cannot easily identify whether zero cells in tables are structural or disclosive,
but humans can. The purpose of the guide is to show precisely what checks
have been made, where differences occur between humans and computers, and
why they are necessary.

7 Engagement with TREs

One of the lessons learned from the original Stata version of ACRO [3] was the
importance of user buy-in. Although that version met its design goals (and
has subsequently been adopted by Eurostat in its TRE), reaction to it was a
mixture of “this looks useful, I'll give a go", “this looks useful, I'll wait to see
it installed before I commit myself”, and “I’'ve read the installation manual and
have no idea what’s going on, so it’s a no". As a result,that version of ACRO
has remained largely within the project remit: a demonstration of possibilities.
The SACRO project was intended to involve co-design from the outset to take
ACRO to the next stage, of general utility and application. This involved three
tests:

1. Would a new tool be acceptable to users?
2. Would a new tool be acceptable to output checkers?
3. Could a new tool be installed in secure research environments?

The SACRO project took two approaches. First, six TREs (OpenSAFELY
at Oxford University, and four Scottish Safe Havens) are co-investigators on
the project to provide input from user and output checker perspectives (Open-
SAFELY led the design of the user interface). This group also directly tested
the feasibility of installing and allowing the Python code to run on their sys-
tems as TREs differ in their perceptions of python’s ‘riskiness’. Second, the
SACRO team contacted a large number of TREs in the UK and abroad, and
set up a network of interested parties potentially willing to be testers. Several
engagement events with this group identified how they worked and what they

16

would expect from an automatic solution. At the time of writing (July 2023),
the first ‘external’ TRE’s are starting to install and run the tool with genuine
users. SACRO has a workpackage dedicated to helping TREs set up their sys-
tems, and then collecting evaluation feedback. This aims to make sure that the
tool is tested in as wide a variety of environments as possible, given the time
constrain. A secondary aim is to involve TREs in the development, to build a
sense of ownership and lay the foundations for widespread adoption. This helps
to address the concerns of ‘wait-and-see’ TREs.

8 Acknowledgements and Future Plans

This work is funded by UK Research and Innovation, (UKRI) [Grant Number
MC_PC_23006], as part of Phase 1 of the DARE UK (Data and Analytics
Research Environments UK) programme, delivered in partnership with Health
Data Research UK (HDR UK) and Administrative Data Research UK (ADR
UK).

Additional features and improved user experience will be facilitated by the
involvement of end-users and output checkers. Beyond then, UWE has commit-
ted to web hosting various resources for the indefinite future, and partners have
agreed to continue support and development of the toolkits. We are keen to

engage with any interested parties to enrich and build an on-going community
of support for SACRO.

References

[1] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis,
and Florian Tramer. Membership inference attacks from first principles. In
Rakesh Bobba, editor, IEEE Symposium on Security and Privacy, pages
1897-1914, Piscataway, NJ, USA, 2022. IEEE Press.

[2] B. Derrick, E. Green, F. Ritchie, J. Smith, and P. White. Towards a
comprehensive theory and practice of output SDC. In UNECE/Eurostat
Workshop on Statistical Data Confidentiality, 2023.

[3] E. Green, F. Ritchie, and J. Smith. Automatic checking of research outputs
(ACRO): A tool for dynamic disclosure checks. ESS Statistical Working
Papers, 2021:1-27, October 2021. doi: 10.2785/75954.

[4] Elizabeth Green, Felix Ritchie, and James Smith. Understanding output
checking. Technical report, European Commission (Eurostat - Methodology
Directorate), 2020.

[5] T. Hubbard, G. Reilly, S. Varma, and D. Seymour. Trusted research en-
vironments (TRE) green paper. ZENODO, 2020:1-31, July 2020. doi:
10.5281 /zenodo.4594704.

17

[6]

7]

18]

19]

[10]

[11]

[12]

Emily et al. Jefferson. GRAIMATTER Green Paper: Recommendations for
disclosure control of trained Machine Learning (ML) models from Trusted
Research Environments (TREs), September 2022.

Open-Safely. Sacro:a tool for fast, secure and effective output checking,
which can work in any TRE. https://github.com/opensafely-core/
sacro, 2023.

Richard John Preen, Jim Smith, Maha Albashir, and Simon Davy. ACRO.
https://github.com/AI-SDC/ACRO, 2023.

Python Software Foundation. Python developers survey 2021 results.
https://1lp.jetbrains.com/python-developers-survey-2021/, 2021.
Accessed: 24/07/2023.

F. Ritchie. Disclosure detection in research environments in practice. In
Joint UNECE/Eurostat work session on statistical data confidentiality, vol-
ume WP. 73. United Nations Statistical Commission and Economic Com-
mission for Europe Conference of Europe Statisticians, 2008.

F. Ritchie. The ‘five safes’: A framework for planning, designing and
evaluating data access solutions. Zenodo, 2017:1-5, September 2017. doi:
10.5281/zenodo.897821.

Jim Smith, Richard J. Preen, Andrew McCarthy, Alba Crespi-Boixader,
James Liley, and Simon Rogers. Safe machine learning model release from
trusted research environments: The ai-sdc package, 2022.

18

