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Introduction

Introduction
Asthma

@ Asthma is a common chronic constrictive disease of the respiratory
system

Affects 500 million people worldwide !

Societal cost

e 56 billion dollars in 2011 in the USA
e €19.3 billion in 2016 in the EU

@ Inflammatory reaction leads to

e airway remodelling
e airflow limitation
o diminished lung function

'Nunes, C., Pereira, A. M., Morais-Almeida, M. (2017). Asthma costs and social
impact. Asthma research and practice, 3(1), 1-11.
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Introduction

Introduction
Asthma

o Currently(Update 2022) there is no cure
@ Treatment controls symptoms
@ In general current therapies are still ineffective due to

e insufficient understanding of pathophysiology
o disease heterogeneity
@ Recent studies indicate that a patient specific approach /
patient-specific medicine is required
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Novelty and contribution

Traditional asthma treatment

Traditional approach
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Novelty and contribution

Optimized asthma treatment
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Novelty and contribution

Integrative models in clinical pulmonary research

Applications
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Novelty and contribution

Contribution |

@ We generate validated 3D digital twins of pulmonary structures

@ We introduce geometry processing methods that facilitate the
simulation of bronchoconstriction.

© Additionally, we perform CFD studies that quantify the airflow in
normal and asthmatic patient-specific image-based 3-dimensional
bronchial tree representations
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Novelty and contribution

Contribution 1l

@ We investigate monitoring medication adherence through content
based audio classification for pressurized metered dose inhalers.

@ We compile two datasets containing inhaler use audio and present a
comparative study investigating the classification accuracy of multiple
machine and deep learning classifiers for a series of features.

@ We propose a GMM based method that adequately differentiates
inhaler events and in certain cases outperforms them.

@ Furthermore, we present an approach driven by convolutional neural
networks that adequately capture features and allow for
computationally inexpensive real time embedded deployments
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Novel patient-specific structural modelling
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Novel patient-specific structural modelling Computational modelling of the pulmonary system

Related work, trends, challenges and applications

Pulmonary structural modelling

WEIBEL 1970

WANG ET AL. 1992

KITAOKA 1999
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Novel patient-specific structural modelling Computational modelling of the pulmonary system

Related work, trends, challenges and applications

Pulmonary ventilation and CFD

- A
SUL 2014
N\

: '.'~~' :_% ‘ﬁ @
B /'_’ N h Iﬂ )’K
LIN 2013 =

FIGURE 3/ () Reference (TLC)image and (b)foating (FRC) image for one subject. Red, airway tre; biue, vesselre; cyan, lobes; reen spheres,
the landmark fthe vessel ree. ) side view, (4 front view.
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Novel patient-specific structural modelling Computational modelling of the pulmonary system

Related work, trends, challenges and applications

Multiscale models

BURROWES 2013

;. edge elling ient-specific
Fronchia challense knowledge modelling patient-specific
(MCh, i ‘coupled CFD/solid of biological and application
mechenics model physiological
pathways, processes data construction and/or disscmination and
acut airway radius airway bucklin . - exploitatio
halien ‘compliance etc. management refinement of models on exploitation
platform different temporal and
spatial scales
N patial scale patient
delivery of agonist patient-specific data
— 3 existing consortia
— >2000 patients healthcare
‘contioum model — “omics ethic: professionals
— CT/MR imaging security
integration of
1 popul — clinical models healthcary
‘eoliteration by cpithelalcll — lung function monization providers
* — 3 year follow-up - integration P
— proof-of-concept alaaccess
( —| " validation studies multi-scale industry
i s model — pharma
LS 3ng verification — biotechnology
( e vivo models ) individual-based cells -

it canics | Schematic diagram illustrating the workflow structure within the AirPROM project.
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Novel patient-specific structural modelling

Related work,

Validation studies

Table 2. Number of acini

Model
Weibel (1963)
Horsfield (1968)
Phalen (1978)
Kitaoka (1999)
Tawhai (2000)
Florens (2011)

Model
Phalen (1978)
Horsfield (1981)
Horsfield (1987)
Tawhai (2000)
Tawhai (2004)
Schmidt (2004)

No. of Acini

277636471185
66000
27992

27706

29445
23000

RBy

1.56 (0.98)

1.39

1.47(0.99)

148

RU RM
15.3:1.2 152:17
15 15
16.4 16

RDy
1.166 (0.99)

Generation dist:
RL
17.2:22 1.
17
17.4

RLy

1.13(0.77)

114

1.13(0.87)

trends, challenges and applications

MONTESANTOS 2016
w [ Lungs
9:1.4 16.3:1.7 16.2:1.7

16

146

15 16 156
17.6:3.4

163 16.2 16
15-16

RBs RDs
2.49(0.99) 1.397 (0.99)
2508 1.351
251-2.81 1.35-1.45

254-281 15
2358 1.323
2.8(1.00) 1.41(0.98)

Computational modelling of the pulmonary system

min max
8 25

8 25

3
888

9

Table 3. The branching, diameter and length ratios for Horsfield order (RBy,, RDy, RLy) and Strahler order (RBs, RDs, RLs) respectively.

RALs
1.392(0.99)
1.333
1.33-1.46
155
1.344
1.39(0.95)
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Novel patient-specific structural modelling

Processing pipeline

Structural modelling

Domain Q

WY
¥

Airways Mesh Generation of
Sa(x) extraction: surface for
extended
bronchial tree
Extraction T
of centerline
and
undirected Computation (e aff
> graph L of Pruning —>| extended
3D graph centerline
segmentation
Points in 3D space
Sampling 3D space
Lungs e
S1(x) Point cloud

generation
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Novel patient-specific structural modelling Structural modelling

Segmentation and one dimensional representation

@ Extraction of airway surface and centerline from CT scans using the FAST
framework.

@ Airway segmentation (left) and airway surface generation(center) and
generation of one-dimensional representation through skeletonization.

Version 1.00, July 2022
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Novel patient-specific structural modelling Structural modelling

Generation of extended bronchial tree

@ Bronchial tree extension process

. Stavros Nousias Patient-specific modelling Version 1.00, July 2022 21/



Novel patient-specific structural modelling Structural modelling

Generation of extended bronchial tree
|

The following steps can describe the bronchial tree extension algorithm.
For each lung subvolume S;, and 5 :
@ Generate a point cloud sampling the subvolume with a uniform random process.

@ Assign a seed point

EpiE'F’ pi
IP]

@ Employ principal component analysis (PCA) on the set of sampled points to define
the splitting plane. D = [p1 p1p1 - ps), A = DD is the auto-correlation matrix.

@ Calculate the center of mass of the sampled points ¢ =

Direct singular value decomposition yields A = UU" where U = [u; uz uz] Then
the largest eigenvector is defined as u, = maxi<j<sw;

@ Given the vector d expressing the direction of the distal airway, the splitting plane
is described by center of mass ¢ and vector d x [d X um]. The selected plane
maximizes the available space for each new subdivision.
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Novel patient-specific structural modelling Structural modelling

Generation of extended bronchial tree
I

000 ©O

Calculate the centroid of each new subdivision.

For each centroid, define a line segment starting from the seed point extending
40% of the distance towards the centroid of the subdivision.

If a newly created branch is more minor than 2mm, it is considered terminal.
The process is repeated until no seed points remain.

Any branch found outside the lung volume is removed along with children’s
branches.
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Novel patient-specific structural modelling Structural modelling

Datasets

e VESSEL12 (VESsel SEgmentation in the Lung) challenge
[Rudyanto et al., 2014] provides 20 anonymized scans in Meta
(MHD/raw) format.

Scan | Image type Pathology Scanner and kernel | Spacing Z-spacing # Of | kV/mAs
(mm) (mm) slices
01 Angio-CT Alveolar inflamma- | Siemens SO- | 0.76 1 355 120/40
tion MATOM  Sensa-
tion 64, B60f
02 Chest CT Alveolar inflamma- | Philips ~ Mx8000 | 0.71 0.7 415 140/74
tion IDT 16, B Kernel
03 Chest CT ILD Philips ~ Mx8000 | 0.62 0.7 534 120/77
IDT 16, B Kernel
04 LD  Chest | ILD Toshiba Acquilion | 0.86 1 426 100/44
cT ONE, FC55
05 Chest CT ILD Philips ~ Mx8000 | 0.72 0.7 424 140/73
IDT 16, B Kernel
06 Angio-CT ILD Siemens SO- | 0.63 1 375 120/81
MATOM  Sensa-
tion 64, B30f
07 LD  Chest | ILD Toshiba Acquilion | 0.69 1 461 100/23
cT ONE, FC55

Dr. Stavros Nousias Patient-specific modelling Version 1.00, July 2022 24 /98



Novel patient-specific structural modelling Structural modelling

Qualitative evaluation - 12 generations

Estimation of bronchial tree for 12 generations. Surface reconstruction was
performed only for the first 7 generations

Dr. Stavros Nousias Patient-specific modelling Version 1.00, July 2022 25/



Novel patient-specific structural modelling Structural modelling

Qualitative evaluation - 23 generations

Estimation of bronchial tree for 23 generations. Surface reconstruction was
performed only for the first 7 generations
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Novel patient-specific structural modelling

Structural modelling

Structural features comparison

;‘lc‘i’“i of g;:‘ete;f RBy |RDy |RLy |RBs |RDs |RLs Mean ¢
Decline
AVATREE | 31204 | 0.83+0.21 | 1.74 1250 | 1.26 + | 2.35 1.25 1.23 £ | 32.4488%
1.01 1.02 28.95

Tawhai et | 20445 1.47 013 |28 1.41 1.39
al.2004
Horsfield et | 27992 254 |15 155 37.28
al.1986 2.81
Bordas et 42.90 =+
al.2015 0.10
Montesan- | 27763 + | 0.789 £ | 1.56 1116 | 1.13 | 2.49 1397 | 1392 | 421 =+
tos et al. | 71185 |0.16 21.4
2016
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Novel patient-specific structural modelling Structural modelling

Strahler order comparison

Group
2 ‘ @ AVATREE

10000
A\ pone.0168026.5001

s
H 1000 ‘
©
k-]
; 4
g 100
2 ¢
o
2 4 6 8 10 12 14 16
Strahler Order

Figure: Comparison in terms of the number of airways for each level of Strahler orders.
This comparison confirms that our model comes into agreement with
pone.0168026.s001[Montesantos et al., 2016].
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Novel patient-specific structural modelling Structural modelling

Airway length distribution

60
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Figure: Distribution of airway lengths for each generation for AVATREE and
pone.0168026.s001 [Montesantos et al., 2016]
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Novel patient-specific structural modelling Structural modelling

Branching angle distribution
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Figure: Distribution of branching angles for each generation as predicted by our model
AVATREE [Nousias et al., 2020] and pone.0168026.s001
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Novel patient-specific structural modelling Structural modelling

Diameter distribution

Group
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Figure: Distribution of diameters for each generation for AVATREE and pone. 0168026.
5001
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Novel patient-specific structural modelling Bronchocontriction Simulation

Fundamentals on representation of 3D Geometry

Preliminaries on 3D meshes

@ Each triangular mesh M can be described as M = {V &, F} V is the set of
vertices, £ is the set of edges, and F is the set of faces

@ Each vertex i can be represented as a point.

vi= (i, i, zi), Vi = 1,2, , N

@ For each face f;, Vi=1,2,--- ,/ we denote the centroid
m, — 2 —Fv?i2 +Vi37v,-: 1,2, .1

@ The outward unit normal n,, to the face f; (located at the centroid m;) is
calculated as np,:
(V,‘2 — Vfl) X (V,'3 — vil)

||(V,'2 - Vi1) X (Vis - Vi1)|

n, =

i
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Novel patient-specific structural modelling Bronchocontriction Simulation

Simulation of airway bronchoconstriction

@ Get vertex positions V
@ Initialize Laplacian matrix

o
o

©0

000

wjj = cot ajj + cot by, (i,j) € E
k .
Lij = Xikee —wik; i=j ()
0, otherwise
5 = LV = [(5;",(5;7 e ,5,-\1;]7—,5,' = —4A,‘K),‘l‘l,‘
Initialize W; and W in the following manner:

W, =k I -VAWy =1 (3)

where | is a unitary matrix, k a double constant set to 10~2 and A the average face area
of the model.

Solve for V/ 'V = arg miny {|W,LV||? + Wy ||V — V,||}

Update W; and Wy so that

Wi = s W Wi = w0 A (@

where t denotes the iteration index.

Recompute L.

Compute narrowing ratio rf through Shape Diameter Function[Shapira et al., 2008]
Repeat steps 4 to 7 for rt > r + e, where r is the desired
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Novel patient-specific structural modelling Bronchocontriction Simulation

Addressing edge effects

@ Addressing unwanted edge effects. The region between the narrowed
and the unprocessed part is smoothed out using Taubin algorithm and
Bilateral Normal filtering [Zheng et al., 2010]
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Novel patient-specific structural modelling Bronchocontriction Simulation

Simulation of airway constriction

‘i T

A\

e

Figure: Simulation of constrictive pulmonary conditions. A selected region of the
bronchial tree undergoes a controlled narrowing to the desired degree.
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Novel patient-specific structural modelling Airflow flow in normal and constricted lungs

Compute flow in normal and constricted lungs

Geometry

Visualization of bronchocontriction simulation for the first five generations
of a patient-specific reconstructed bronchial tree surface

Segmented lung
model legend

Inlet

Glottis

Trachea Upper

3" generation
g T

Outlets
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Novel patient-specific structural modelling Airflow flow in normal and constricted lungs

Compute flow in normal and constricted lungs

Geometry

Visualization of bronchocontriction simulation for the first 5 generations of
a patient-specific reconstructed bronchial tree surface
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Novel patient-specific structural modelling Airflow flow in normal and constricted lungs

Compute flow in normal and constricted lungs

Simulation setup

OpenFOAM configuration

Finite Volume Method
SIMPLE scheme

kOmegaSST turbulence model
Pressure differential -15 Pa
Time step 5 x 10*
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Novel patient-specific structural modelling Airflow flow in normal and constricted lungs

Compute flow in normal and constricted lungs

Sagital cross-section

Sagital cross-section of oral cavity, glottis and trachea in three cases.
Visualization of the airflow velocity profiles for a) Normal case b)
Narrowing is introduced in both left and right lungs and c) narrowing is
introduced only in the left lung.

a )/ﬁk b

<U> (m/s) <U> (m/s)

2.7

g
o
@

w
o

0.675

T
o
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Novel patient-specific structural modelling Airflow flow in normal and constricted lungs

Compute flow in normal and constricted lungs

Cross-section, first bifurcation : Velocity profile

Velocity profile on the cross-section of the first bifurcation.a) Normal case

b) Narrowing is introduced in both left and right lungs and c) narrowing is
introduced only in the left lung.

a b

—_— i T 7 | —

|y | ' ! : | :

0 0675 135" ‘2,02 27 0 0675 135 203 27 0 0675 135 203 27
<U>m/s <U>m/s

<U>m/s
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Novel patient-specific structural modelling

Airflow flow in normal and constricted lungs

Compute flow in normal and constricted lungs

Pressure distribution

Pressure distribution for the surface of the oral cavity, glottis trachea and
the first five generations. a. Normal case b.Narrowing introduced in both
left and right lungs c. Narrowing is introduced only in the left lung.

a b

Dr. Stavros Nousias
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Novel patient-specific structural modelling Airflow flow in normal and constricted lungs

Compute flow in normal and constricted lungs

Coronal cross section: Velocity profile

Visualization of velocity distribution for coronal cross-section normal and
constricted lung geometry. a) Normal lung geometry b) Constrictions are

introduced in both left and right lung airways c) Constrictions are
introduced only on the left lung.

U
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Novel patient-specific structural modelling modelling

Human-machine interfaces for patient-specific pulmonary

modelling

User interface. The Ul is comprised of four panels, namely the data input
and output panel, area selection panel, segmentation panel and
bronchoconstriction simulation panel

1 Use brush Brush Sze 200 < Brush dstance. 1.00 = [Nearest Neighbours ]

5 Surface
Selection
Module

=
Cone Angle 0.00500 Number of rays. 25 Surface .
—~ - == Segmentation
I Post processing Per segment Number of clusters 4 Lamda 0.00010
Module
% = Simulation
Reratons s 5[ Contracton weght mutper 080 5 Module
[ use custom function [sin(x)  [*]| Frequencyx P 0.20 | O use Interpolation Factor |0.50 - [ Extended smoothing
“ [ o
ol
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Novel patient-specific structural modelling modelling

Human-machine interfaces for patient-specific pulmonary

modelling

Demonstration of broncho-constriction simulation. Airway of second
generation narrowed at 34% of original diameter.
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Novel patient-specific structural modelling Applications

Spatial probability pro generation

@ Visualization of spatial
likelihood for each
branching generation

@ Spatial maps are overlaid
on the CT scans

@ Probability to locate a
branch of
e 2nd generation
e 3rd generation
o 4th generation

Dr. Stavros Nousias Patient-specific modelling
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Monitoring medication adherence pulmonary diseases

Monitoring medication adherence pulmonary diseases
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Monitoring medication adherence pulmonary diseases

Prescribed inhaler use

Figure: How to use a metered dose inhaler. A. The cap should be removed and the
inhaler shaken B. The patient should breathe out, away from the inhaler C. The patient
should bring the inhaler to the mouth, place it between the teeth and close the lips
around it. Afterwards, the patient should start to breathe in slowly, press the top of the
inhaler once, and keep breathing in slowly until a full breath is taken. D. The patient
should remove the inhaler from the mouth, hold breath for about 10 seconds, and then
breathe out. E. The patient should breathe out
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Monitoring medication adherence pulmonary diseases

Related work, trends, challenges and applications

Monitoring medication adherence

e Howard et al. [Howard et al., 2014] reported the existence of
electronic or mechanical meters integrated into the device.

o Holmes et al.
[Holmes et al., 2012, Holmes et al., 2013, Holmes et al., 2014]
designed decision trees in the area of blister detection and respiratory
sound classification.

e Taylor et al. [Taylor et al., 2014, Taylor et al., 2016] used the
continuous wavelet transform to identify pMDI actuations in order to
quantitatively assess the inhaler technique, focusing only on the
detection of inhaler actuation sounds.

e Taylor et al. [Taylor et al., 2018] compared Quadratic Discriminant
Analysis (QDA) and Artificial Neural Network (ANN) based classifiers
using MFCC, Linear Predictive Coding, ZCR and CWT features.
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Monitoring medication adherence pulmonary diseases

System architecture

Monitoring system architecture.

Three scenarios are taken into Electronic
account. pealth
ecord

@ The inhaler device transmits
the captured audio samples
to the mobile device. The
mobile device stores the

. . Embedded Mobile Ul
audio files and sends them to : processor
a cloud processing server for =

differentiation.
@ The audio device transmits = _—
the captured audio samples Viobile
to the mobile device, and the mic processor
differentiation occurs in the
Mobile device processor. @
L .
@ The captured audio is = )
mic

directly processed in the
embedded processor.

Medical
personnel
access

Cloud server
processing
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Monitoring medication adherence pulmonary diseases Methodology

Audio processing pipeline

PROCESSING HUMAN ANNOTATOR
RELEVANCE
FEEDBACK
FEATURE
AUDIODATA  —p  PROCESSING ~ — ——>  CLASSIFICATION —— DECISION MAKING
EXTRACTION
NORMALIZATION SPECTROGRAM GAUSSIAN MIXTURE

MODELS

S . —}@ CEPSTROGRAM RANDOM FORESTS

mbedded Mobile Ul

7EE ADABOOST

TIMESERIE!
5 8 LSTM
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Monitoring medication adherence pulmonary diseases Methodology

Feature extraction

Spectrogram

S = spectrogram{x[n]}(m,w) = | X(m,w)|? (5)

where X(m,w) is the Fourier transform of x|[n],

+1) (6)

me(l’...’\‘WJ) (7)

w is the window size and h is the frame increment. The latter is set to h = 7.
Feature vector v,

and

=Y S(m, k) (8)

vs is subsequently downsampled to v, so that

N—(w—h)

N— (w Ne(woh),

v, € RIFHDIXI | vl e RV

(9)

where Ng = 32 is the number of frequencies after downsampling.
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Monitoring medication adherence pulmonary diseases Methodology

Feature extraction
Ceptrogram

Cepstrogram C(m, k) is formulated as

N-1 2
27
k) log| X ( Ty 1
C(m, ,,EO og| X (m, n)|? cos( N n) (10)

where X(m, n) is the short time Fourier transform, m denotes the m — th
temporal component and k the k — th cepstral coefficient and n the n — th
frequency component. The audio feature vector v = [vivavs ... v] is
derived by summing up the quefrency magnitude for every temporal
window for each quefrency component. Feature vector v,

M
ve=Y_ C(m,k) (11)
m=1

v is subsequently downsampled to v/ so that

Ve € R[W/Q-l-l)]X[N—(W—h)/h] N VIC c RNFX[N—(W—h)/h] (12)
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Feature extraction
MFCC

MFECC is an efficient speech feature based on human hearing perceptions
MFCC is based on known variation of the human ear’s critical bandwidth
with frequency.

Mel Filter
Bank

Speech Pre-
Signal emphasis

. Windowing
Framing Hamming FFT DCT MFCC
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Feature extraction

Time

(b) Exhalation

(d) Environmental

(a) Drug actuation

(c) Inhalation

Figure: Visualization of the segmented
Dr. Stavros Nousias

Patient-specific modelling

Methodology
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Figure: lllustration of reshaping of a vector
into a two-dimensional matrix.
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Supervised feature classification with Gaussian Mixture

Models

A Gaussian Mixture Model (GMM) :

{aiaﬂi7cf}7i€ K (13)

The Gaussian mixture density:

1 1 3o —1 )

_ [=5(v=—ui) G (v—pi)]

p(v]0i) = e ? (14)
I (27r)%|Ci|2

The complete set of parameters for a mixture model with K components is
©=1{ay, - ,ak,01, - 0k} (15)
Each GMM model A, for class n is parameterized as follows:
Ao = {al, u Clh k=1, K (16)

An expectation maximization (EM) approach to derive the parameters K, , {a;, ui, Ci}n
for the GMM A, corresponding to class n that best fit the input data
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Supervised feature classification with GMMs

Expectation Maximization

E-step : We compute wj, for all feature vectors v; and all mixture components k.

Pk (vi, Ok) - ak
wi = — PRV 00) (17)
> m=1 Pm(VilOm) - am
for all components k , 1 < k < K and all data samples i, 1 <i < N.
M-step: We calculate the new parameters. Given N, = Z,N:1 wij, the sum of membership
weights for the k — th component we get the mixture weights:
N
aZeW:Wk,lngK (18)

The updated mean: u® = Nik Ef\’zl wi - vi, 1 < k < K and the updated

covariance:Cp®" = Nik vazl wik(v — )T (v — )
Termination criteria: log /(©)sy1 —log/(©): <€

where the log-likelihood, defined as log /(©) = Zf\’:l log p(vi|©) and e is a small user-defined
scalar value.
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Supervised feature classification with GMMs
Fitting

For each class of the data
O For K=1--Knax
@ For assumption that covariance matrix is either diagonal or full
@ Compute Gaussian Mixture
® Compute Bayesian Information Criteria
@ GMM with lowest Bayesian Information Criteria is assumed to best fit
the data

For test sample v and for each GMM model compute likelyhood.
The test feature vector is assigned to the class with the greatest likelihood.
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Random Forest

. Training Set
N features 12800 samples

data set: N |
features / l \

22800 samples

characteristic

Bootstrap Set 1 Bootstrap Set 2 ¢ ¢ ¢+ ¢ Bootstrap Set K

25, N5 .

00B 1 1“‘;3*’3 00B2 «.o.. IH‘KBES 008 K

* e 0 e 0 e 0 0

4

Testing Set
N features
10000 samples

Classification results
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AdaBoost

(X, ym) Where x; € 27, y; € {—1,+1}.
1/m for i =

Given: (x1.3),
Initialize: Dy (i

» Fort = 7

Train weak leamer using distribution D;

Get weak hypothesis hy : 2" — {—1,+1}.
Aim: select iy with low weighted error:

Non-linear classifier

& = Priep, [ (x;) # vi]

Choose o = }In

Feature 2
.

Update, for i = 1

where Z is a normalization factor (chosen so that D ;1 will be a distribution).

T
.‘,gn(za,,.,m)
=1

weak classifier K Output the final hypothesis:

Classifier|

H(x

Fig. 1 The boosting algorithm AdaBoost.
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Audio event classification and localization with long-short

term memory recurrent neural networks

Mrm :
0

-20k |

0

Spectrogram Window
:

Mini - batching
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Monitoring medication adherence through convolutional
neural networks

Fully Connected Layer

Softmax Layer

Figure: Overview of the processing pipeline
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Monitoring medication adherence pulmonary diseases Data collection

Dataset A

Inhaler sounds in indoor and outdoor environments
8 kHz sampling rate and 16-bit depth.

Samsung HM1200 Bluetooth

Placebo canisters.

Mobile application connected to the Bluetooth microphone for data
collection

@ The sounds were categorized into inhaler actuations, exhalations,
inhalations, and environmental or other sounds.

@ Participation of 12 persons.

@ In total, 1980 segments of 0.5 seconds each were compiled in a
balanced collection,

@ 495 per class.
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Dataset B

@ Three subjects, between 28 and 34 years old,
@ Placebo canisters.

The first person (male) committed 240 audio files, the second subject
(male), 70 audio files and the third subject (female) 50 audio files.

360 audio files
12 seconds each, containing a full inhaler usage case.

Acoustically controlled indoor environment

protocol that defined all the essential steps of the pMDI inhalation
technique.

@ Monophonic audio at 8KHz , 16 bit
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Capturing device

(a) (b) (c)

Figure: a)Experimental setup of the pMDI. The Bluetooth microphone is firmly locked
on the device. b) Inhaler prototype without casing. The pMDI is placed within a cavity.
c) Inhaler prototype with casing.
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Annotation
Date  Analyae | Annotate | 7
»umdE g REO&RA
B | Edale |- T
Inhale
081 Moise m
06l il
04 o
02 .
O -
021 =
04l il
|
06 -
08l -
i ! ! ! ! !
0 2 4 5 8 10 12

Figure: Annotation toolkit Ul. The user inspects the audio graph, selects a segment
corresponding to a certain class, and attaches the proper annotation.
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Classification accuracy for the 4-class problem. Dataset

" AT

Io GMM
Io SVM
0o Random Forest
Do ADABoost
100 — 7
98.51 98.7
9808 e ] onma 98
98 [ 96.72 97.03 97.28 774 70|
z ] 96219621
o) . |
& 94f |
s
s 92 |
S
Z 901 |
L
O 88| |
86.62
86 - H |
MFCC Spectrogram Cepstogram
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Noise robustness assessment

Table: Classification accuracy (%) vs added noise factor

Added noise and environmental sounds factor
0.00 0.10 0.20 0.50

GMM | 96.718 | 93.13 | 87.778 | 79.899

SVM | 97.026 | 93.59 | 87.0202 | 79.4444

MFCC RF 96.205 | 93.23 | 86.2626 | 78.333
ADA | 96.205 | 92.93 | 85.9091 | 72
GMM | 94.768 | 92.83 | 88.384 | 78.485
SPECT SVM | 86.615 | 85.35 | 83.2323 | 78.68687
RF 97.282 | 95.66 | 91.8182 | 83.28283
ADA | 98 95.15 | 92.0202 | 81.71717
GMM | 98.513 | 96.47 | 96.414 | 82.879
CEPST SVM | 98.718 | 95.81 | 91.9192 | 83.93939

RF 97.744 | 9591 | 92.7778 | 83.8889
ADA | 98 96.11 | 91.6667 | 81.9697
MFCC GMM FKL | ADA | 96.718 | 91.364 | 87.172 | 78.131
SPECT GMM FKL | ADA | 94.821 | 93.384 | 87.727 | 77.121
CEPST GMM FKL | ADA | 98.513 | 94.242 | 94.444 | 81.162
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Confusion matrices

Table: Normalized % confusion matrix for MFCC, spectrogram and cepstrogram feature
extraction approaches

Reference

MFCC \ SPECT \ CEPST
Drug [ Exhale [ Inhale [ Noise | Drug [ Exhale [ Inhale | Noise | Drug | Exhale | Inhale | Noise
Drug 97.54 0.00 0.21 0.21 97.54 0.00 0.00 0.00 99.38 0.41 0.00 0.41
SVM Exhale 0.41 96.14 1.23 2.89 2.46 58.94 1.43 3.73 0.41 98.16 1.43 0.41
Inhale 0.00 0.00 97.74 0.20 0.00 0.41 94.88 0.83 0.00 0.20 98.57 0.41
Other 2.05 3.86 0.82 96.70 0.00 40.65 3.69 95.44 0.21 1.23 0.00 98.77
Drug 97.13 0.20 0.21 0.00 97.74 0.20 0.00 0.00 ' 98.97 0.41 0.00 0.62
RE Exhale 1.44 95.93 2.26 4.33 0.00 96.95 2.05 2.69 0.82 97.35 1.64 1.65
S Inhale 0.41 0.00 96.71 0.62 0.62 0.61 97.95 0.83 0.00 0.61 98.16 1.24
:5 Other 1.02 3.87 0.82 95.05 1.64 2.24 0.00 96.48 0.21 1.63 0.20 96.49
3 Drug 97.54 0.00 0.00 0.41  98.77 0.41 0.00 0.00 99.18 0.20 0.20 0.21
a ADA Exhale 1.03 96.75 1.65 4.95 0.41  96.95 1.43 1.45 0.62 97.35 1.84 1.03
Inhale 0.00 0.20 96.91 1.03 0.00 0.20 98.36 0.62 0.00 0.61 97.54 0.82
Other 1.43 3.05 1.44 93.61 0.82 2.44 021 97.93 0.20 1.84 0.42 97.94
Drug 96.71 0.00 0.00 0.00 99.18 0.41 0.00 2.69 99.38 0.00 0.00 0.62
GMM Exhale 0.82 96.14 1.23 2.68 0.62 93.29 1.64 6.00 0.41 99.18 1.43 2.27
Inhale 0.21 0.00 97.74 1.03 0.20 3.46 98.16 2.90 0.00 0.41 98.57 0.21
Other 2.26 3.86 1.03 96.29 0.00 2.84 0.20 88.41 0.21 0.41 0.00 96.90
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Comparison to CWT

Table: Normalized % confusion matrix for continuous wavelet transform.

Reference
CWT
Drug | Exhale [ Inhale | Noise
Drug | 97.11 0.20 0.20 0.00
sym | Exhale 144 98.16 2172 85.66
Inhale  1.03 0.82 71.66 6.56
Other  0.42 0.82 0.42 7.78
5 Drug  98.97 0.40 1 0.20 0.20
5 re Exhale  0.00 94.10 164 8.60
3 Inhale  1.03 0.81 95.70 2.67
a Other  0.00 4.69 2.46 88.53
Drug | 99.18 0.00 1 0.41 0.41
ADA | Exhale  0.00 95.91 1.64 6.56
Inhale | 0.20 0.61 96.31 1.64
Other | 0.62 3.48 1.64 91.39
Drug Other
Q_'():ﬁss Drug 99.18 0.27
Other 0.82 99.73
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Relevance feedback

@ Require user defined entries
f:{VF:l?'.. 7VFn7'.' 7VFN}
Dataset D = {vp1, " ,VDms " * s VDM}

@ Initialize personalized dataset D = {} as an empty set
© For each vg, € F

o Dg, < k nearest neighbors of vg, using D
Dr = DFUDg,

Q@ DrFr=DrUF

© Ensure each element of Df is unique
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Monitoring medication adherence pulmonary diseases Results

Relevance feedback evaluation
GMM CEPST
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User submissions
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Dataset B

¢ New fatres

o Full recordings .
. o @ Investigate model
o Entail transition events .
behaviour when

o Per subject data organization e
o Evaluation settings - per subject training data are

o Multi-subject neE EneU

o Single-subject @ Investigate

o Leave One Subject Out transition

o Evaluation settings - per data input between events

o Mixed @ Investigate

o Non mixed intrasubject
prediction
accuracy
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Audio event classification and localization with long-short

term memory recurrent neural networks

Mrm :
0

-20k |

0

Spectrogram Window
:

Mini - batching
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Metrics

Results

Positive

Negative

Predicted

Positive

True Positive (tp)

| False Positive (fp)

Negative

False Negative (fn)

True Negative (tn)

Dr. Stavros Nousias

accuracy =

precision =

recall =

(TP+ TN)

(TP)
(TP + FP)
TN
(TN + FP)

Patient-specific modelling

(TP + FP + TN + FN)

Version 1.00, July 2022
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Results

Accuracy

Multi | LOSO | Single
ada | cepst | 92.11 | 90.35 | 90.67

Multi | LOSO | Single

ada mfcc | 91.76 | 88.31 | 89.43 ada | cepst | 95.02 | 93.32 | 92.57
ada spect 89.8 | 84.55 | 88.79 2da mfcc | 95.01 | 87.02 03.8
cnn | time | 91.71 | 92.94 | 90.61 ada | spect | 94.01 | 84.92 | 92.99
gmm | cepst | 89.81 | 80.54 | 89.33 cnn | time | 95.29 | 94.12 [ 92.69
gmm | mfcc | 82.83 | 82.12 | 78.49 gmm | cepst | 94.1 | 80.92 | 94.02
Mixed |_8MM spect | 86.45 | 83.58 | 86.88 gmm | mfcc | 76.48 | 79.39 | 68.82
Istm | spect | 92.16 | 87.73 | 91.1 Non-mixed |_&Mm | spect | 86.81 | 81.49 | 86.52
rf | cepst | 91.69 | 90.28 | 91.05 Istm | spect | 92.93 | 88.89 | 9254

f | mfcc | 91.61 | 89.36 | 90.86 rf | cepst|93.92 ] 0198 933

| mfcc | 94.87 | 90.08 | 93.26
rf spect | 89.47 85.7 | 89.85 P spect | 92.79 555 9306
svm | cepst | 91.67 | 82.34 | 90.89 svm | cepst | 95.15 | 77.67 | 94.57
svm | mfcc | 92.49 [ 8720 | 92.14 o T g2 8397 | 96.23

svm | spect | 34.03 34 | 33.53 svm | spect | 75.32 | 69.85 | 77.09
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Results
F1 Score

H Drug ‘ Exhale ‘ Inhale ‘
| LOSO | Multi | Single | LOSO | Multi | Single |

\
| || LOSO | Multi | Single
\
\

\

\

| ada | cepst || 63.64 | 93.02 | 92.93 || 94.25 | 95.98 | 93.18 || 96.17 | 96.41 | 93.77
| ada | mfec || 40 96.43 | 94.77 || 91.4 ] 96.15 | 94.09 || 84.76 | 96.72 | 94.03
| ada | spect || 56 | 95.38 | 94.91 | 85.98 | 93.89 | 92.7 | 90.75 | 95.79 | 93.43
[cnn | time || 70 | 828 |8584 |[95.23 | 96.3 | 9358 || 98.24 | 96.77 | 96.2
| gmm | cepst || 62.5 | 93.16 | 94.85 || 88.37 | 94.92 | 94.26 | 74.23 | 96.38 | 96

| gmm | spect || 47.06 | 94.36 | 95.14 || 81.6 | 85.48 | 83.73 || 92.95 | 93.13 | 88.58
[89.9 | 9355|9319 || 92.93 | 94.08 | 94.03
Nonmixed | T | cepst | 8421 ]92.35]929 |[91.61 | 9457 | 94.24 || 97.07 | 96.1 | 94.47
| rf | mfec | 7407 | 93.61 | 938 || 89.95 | 95.68 | 93.58 | 95.24 | 95.48 | 95.26
| rf | spect || 66.67 | 949 | 9572 || 86.03 | 9257 | 92.73 | 93.51 | 95.15 | 94.47
| svm | cepst || 439 |93.81 ] 9459 || 78.28 | 96.05 | 953 | 83.25 | 95.79 | 96.04
| svm | mfec || 47.62 | 96.18 | 96.76 || 86.85 | 96.54 | 96.62 || 85.31 | 96.24 | 95.76
| svm | spect | 81.82 95.96 | 96.81 || 75.37 | 76.28 | 75.89 | 95.36 | 94.98 | 94.24

| Istm | spect || 69.8 | 93.24 | 92.97

\
\
\
\
\
\
\
\ | gmm | mfec || | 10.78 | 18.43 || 81.72 | 83.02 | 76.11 | 48.1 | 66.32 | 75.89
\
\
\
\
\
\
\
|
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Results
F1 Score

‘ H Drug ‘ Exhale ‘ Inhale ‘
\ || LOSO | Multi | Single || LOSO | Multi | Single || LOSO | Multi | Single |
| cepst || 17.58 | 64.84 | 63.28 | 8357 | 87.27 | 84.45 || 86.6 | 89.24 | 86.79 |

|

\

\

\ | ada | mfec || 11.87 | 64.1 | 65.51 | 82.46 | 86.67 | 81.03

| | ada | spect | 25.89 | 74.85 | 74.5 | 72.77 | 81.48 | 78.43 | 8473 | 9119 | 88.94 |
| | cnn | time || 21.85 | 58.1 | 63.41 | 89.08 | 86.81 | 83.06 || 94.94 | 89.95 | 89.05 |
\ | gmm | cepst || 25.81 | 63.96 | 67.46 | 72.42 | 83.73 | 81.02 || 483 | 84.74 | 85.21 |
\ | gmm | mfcc || | 17.13 | 0.47 || 7212 | 73.85 | 65.76 || 41.62 | 53.86 | 53.32 |
\

\

\

|

|

\

\

|

| 80.55 | 89.46 | 85.42 |

| gmm | spect | 32.78 | 7359 | 74.27 | 67.42 | 72.78 | 74.44 || 89.34 | 89.13 | 85.89 |
spect || 23.1 | 66.61 | 70.67 || 75.5 | 86.4 |83.21 || 86.04 |90 | 88.87 |
Mixed | T | cepst || 25.41 | 63.22 | 64.73 || 83.01 | 86.55 | 84.77 || 86.6 | 89.19 | 89.38 |
| ff | mfec || 1587 | 59.78 | 63.84 | 8257 | 86.97 | 84.88 || 84.69 | 87.57 | 87.01 |
| ff | spect| 30.98 | 73.69 | 75.91 | 74.26 | 80.86 | 80.83 || 88.41 | 90.65 | 90.27 |
| svm | cepst || 11.42 | 62.82 | 65.09 || 68.1 |86.9 |84.8 | 68.26 | 88.92|88.77 |
| svm | mfec || 12.83 | 59.93 | 66.03 || 79.33 | 88.91 | 87.66 || 80.38 | 83.93 | 88.66 |
| svm | spect || 2559 | 71.28 | 73.71 | 40.93 | 37.5 | 3519 || 89.51 |90.98 | 89.73 |

‘ Istm
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Results

Performance evaluation : Comparison of the computational cost

‘ Method ‘ Classification execution time ‘ Feature extraction Time ‘ Sum ‘
| enn-time | 0.000460227 | 0.000968868 | 0.0014 |
| Istm-spect | 0.000700771 | 0.001955032 | 0.0027 |
| gmm-spect | 1.82257E-05 | 0.018367229 | 0.0184 |
| ada-spect | 0.000773556 | 0.018398599 | 0.0102 |
| rf-spect | 0.000278274 | 0.019732354 [0.02 |
| svm-spect | 4.70897E-05 | 0.02074642 | 0.0208 |
| svm-mfcc | 2.1926E-05 | 0.021171822 | 0.0212 |
| rfbmfcc | 0.000275223 | 0.021114178 | 0.0214 |
| gmm-mfcc | 2.35955E-05 | 0.023210378 [ 0.0232 |
| ada-mfec | 0.000852494 | 0.022573248 | 0.0234 |
| rf-cepst | 0.000272068 | 0.051282082 | 0.0516 |
| gmm-cepst | 1.19811E-05 | 0.054902331 | 0.0549 |
| ada-cepst | 0.0008844 | 0055359981 | 0.0562 |
| svm-cepst | 3.10628E-05 | 0.057136457 | 0.0572 |
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Results
Others

Table: Classification accuracy in relevant state of the art

‘ Method ‘ Drug ‘ Inhale ‘ Exhale ‘
| Holmes et al. (2012) [Holmes et al., 2012] | 89 | - | - \
Holmes et al (2013-14)  [Holmes et al., 2013, | 92.1 91.7 93.7
Holmes et al., 2014]
| Taylor et al. (2017) / QDA [Taylor et al., 2018] | 88.2 - [ - \
| Taylor et al. (2017) / ANN [Taylor et al., 2018] | 65.6 | - |- \
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Results

Performance evaluation : Comparison of the computational cost
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Execution time per sample (seconds)
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User interfaces for medication adherence monitoring and

relevance feedback mechanism

Visualization of the relation between the inhaler device, the mobile device
and the application.

-
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User interfaces for medication adherence monitoring and

relevance feedback mechanism

Basic features and views

A) Welcoming screen and guidelines B) Record button to start audio
capturing from the inhaler device. C) Clear/Reset functionality to restart
the application. D) Audio analysis to classify the audio data.

0K GOT IT
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User interfaces for medication adherence monitoring and

relevance feedback mechanism

Basic features and views

E) Color legend. F) Spectrogram visualization. G) Spectrogram audio
features for the given window under processing. H) "WAV saved” signal to
notify the user that the audio file has been captured.
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Conclusion

Conclusion

@ This dissertation lies in the family of approaches that constitute the
virtual physiological human

@ Aims to provide novel methods that facilitate patient-specific
computational modelling of the pulmonary system within the scope of
Asthma.

o Additional data-driven machine and deep learning methodologies are
discussed that contribute to the improvement of self-management of
Asthma.

o Computational models contribute to personalized medicine

@ Smart devices provide further evidence to improve self management
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