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Abstract

Water injection into geothermal systems has often become a required strategy to extend and sustain production of geothermal

resources. To reduce a trend of declining pressures and increasing non-condensable gas concentrations in steam produced from The

Geysers, operators have been injecting steam condensate, local rain and stream waters, and most recently treated wastewater piped to the

field from neighboring communities. If geothermal energy is to provide a significant increase in energy in the United States (the US

Department of Energy goal is 40,000MW by 2040), injection must play a larger role in the overall strategy, i.e., enhanced geothermal

systems (EGS). Presented in this paper are the results of monitoring microseismicity during an increase in injection at The Geysers field in

California using data from a high-density digital microearthquake array. Although seismicity has increased due to increased injection, it

has been found to be somewhat predictable, thus implying that intelligent injection control may be able to control large increases in

seismicity.

Published by Elsevier Ltd.
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1. Background

Water injection into geothermal systems has become a
nearly universal and often required strategy for extended
and sustained production of geothermal resources. To
reduce a trend of declining pressures and increasing non-
condensable gas concentrations in steam produced from
The Geysers, operators have been injecting steam con-
densate, local rain and stream waters, and most recently
treated wastewater piped to the field from neighboring
communities. Monitoring of microearthquakes (MEQs)
related to production and injection has been conducted
since the mid 1970s. MEQ monitoring has been applied as
a general indicator of fluid paths and general response to
injection at The Geysers for over 20 years [1–14]. A
dramatic increase in planned injection rates and spatial
extent of injection due to the recent completion of a
wastewater pipeline (from Santa Rosa, California) has
e front matter Published by Elsevier Ltd.
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raised concerns regarding the societal and economic impact
of injection related seismicity. Two obvious questions to be
asked is will the rate and size of the MEQ events place an
upper bound on injection at The Geysers, or vice versa, and
will there be larger and larger events as injection increases?
Although the Santa Rosa injection has only been going on
for a few years the operators are evaluating a 50 percent
increase over the initial injection (41 million liters/day).
Without this injected water the thermal capacity of The
Geysers will be underutilized and The Geysers will not be
able to provide as much energy as possible. Vapor-
dominated geothermal reservoirs such as The Geysers by
their very nature are water-short systems. If The Geysers
was produced without simultaneously injecting water,
reservoir pressures and flow rates from production wells
would decline fairly rapidly, and would reach uneconomi-
cally small levels, while enormous heat reserves would still
remain in the reservoir rocks. Furthermore, the Northwest
Geysers, which contains a significant portion of the
recoverable geothermal energy, is currently underutilized
due to high concentrations of non-condensable gas and
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corrosive HCl. Mitigation of these deleterious components
through water injection would significantly increase The
Geysers resource. Therefore, the key to sustaining and
enhancing energy recovery from The Geysers is water
injection.

Water injection is not totally beneficial. Injected water
may migrate along major fractures and quickly reach
production wells, which may degrade production by
lowering fluid enthalpy and temperature. Hopefully,
injected water will be completely vaporized by contact
with hot rocks before it reaches production wells, supply-
ing additional steam, and increasing reservoir pressures
and production well flow rates with minimal or even
positive operational and minimal hazard impact. However,
injection can also improve the quality of produced steam
from a chemical viewpoint, by reducing concentrations of
non-condensable gases such as CO2 and corrosive gases
such as HCl.

It is also not new knowledge that seismicity at The
Geysers is linked to injection and production. Several
studies have demonstrated that MEQs at The Geysers
geothermal area are associated with both water injection
and steam extraction [2,10,12,15–19]. These studies include
correlation of spatial and temporal MEQ distributions
with injection/production data. In a recent paper [19] the
authors make a comprehensive correlation study based on
induced seismicity and operational data from 1976 to 1998.
They found three types of induced seismicity at high
significance: (a) shallow, production-induced seismicity
that has a long time lag on the order of 1 year, (b) deep,
injection-induced seismicity with short time lag of less than
2 months, and (c) deep, production-induced, seismicity
with short time lag of less than 2 months that appears to
diminish in the late 1980s. For each of these three types of
induced seismicity they also proposed failure mechanisms
based on analytical modeling and reasoning.

For shallow induced MEQs, [19] the authors found that
MEQ distribution closely matches mapped low pressures in
the reservoir and the areas of maximum volume strain
inferred from surface deformation data, suggesting that
these events are caused by poroelastic stressing. The
observations are consistent with a contracting reservoir,
which as it shrinks, induces stresses and strains in the
surrounding crust. Shear stresses on faults outside the
reservoir can increase, causing subsidence. However, these
results [19] suggest that shallow earthquakes are produc-
tion induced, and are in contrast with results of [20].
Studying one specific case in detail, they found that shallow
MEQs are well correlated to injection, rather than
production, and with a relatively short time lag of about
1 week. For shallow MEQs there might be a long-term
effect caused by the overall steam-production and local
short-term responses related to injections. In addition, [21]
hypothesized that there is a back front of seismicity
produced that will cause extended periods of seismicity
after injection has ceased. This was found during hydraulic
fracturing cases not located at The Geysers.
For deep induced MEQs occurring after the 1980s, there
seems to be a consensus that these are correlated to local
injection rates with some time lag [12,15–18,22]. For
example, [12] showed that plumes of MEQs are clustered
around many injection wells, and the seismic activity
around each injection well correlates with its injection rate.
Also, it has been hypothesized that injection-induced
MEQs are probably caused by thermo-elastic perturbation
due to cold-water injection into a hot reservoir [19]. When
cool water flows into hot rock fractures, the fracture faces
contract by cooling, loosening the frictional forces across
the fractures and thereby allowing stress release by seismic
slip. Although [19] studied other mechanisms (e.g. loss of
effective stress due to hydraulic pressure in the fracture),
they concluded that it is the temperature contrast between
the injected water and the hotter rock fracture surfaces that
is probably the dominant mechanism driving The Geysers
injection-induced seismicity. Finally, some have attributed
deep production-induced seismicity to thermoelastic stres-
sing caused by evaporative cooling [19]. They concluded
that an evaporative-thermoelastic model could explain why
deep production correlated seismicity declined in the mid
1980s as the reservoir dried out and evaporative cooling
diminished.
It has also been found that where clusters extend some

distance from the injectors, the production wells tend to
show ‘‘heavy’’ isotopic signature of flashed injectate [12].
They therefore hypothesized that MEQs are induced where
injected water is present as liquid. It was suggested that the
MEQs occurring in this liquid zone might be a result of the
effects of hydraulic head and/or cooling due to the injected
water [12]. Recently, this hypothesis was used to explain
the vertical pattern of induced seismicity in the Northern
Geyser reservoir [18]. Historic Geysers earthquakes and
injection data show that an area of approximately 8 km2

underlain by a cluster of MEQs in the depth range of
3–5 km below sea level. The cluster lies far below the
normal 240 1C isothermal reservoir and is in the underlying
high temperature zone (HTZ), where temperature gradients
can exceed 100 1C/km. Above this cluster there is a gap,
0.5–1 km thick, where few MEQs occur. Above the gap is a
more typical pattern of The Geysers seismicity, including
plumes of MEQs associated with injection wells. This was
then used in a conceptual model to show that this pattern
could be governed by the temperature contrast between
injected water and the rock, and would imply that
significant volumes of injected water have descended into
the HTZ reaching a depth as great as 5 km below sea level
[18]. Furthermore, monthly injection and seismic data from
1983 to 2002 was studied and was found that the deep
injection induced seismicity was lagging behind by 3
months suggesting that it would take about 3 months for
the injected water to descend to depths of 3–5 km.
The above studies have made progress in showing a

general correlation of liquid injection and steam produc-
tion with various types of induced MEQs at The Geysers.
Furthermore, several plausible hypotheses have been
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proposed to explain the mechanisms producing those
MEQs. The Geysers region is subject to active tectonic
forces associated with the strike-slip relative motion
between the North American and Pacific plates [11,18].
Many naturally occurring fractures may be stressed to near
the failure point, so a small perturbation in the stress field
could lead to failure. However, it is not at all certain that
most MEQs at The Geysers are produced by shear slip
along pre-existing fractures [17,23]. Others [24] conducted
highly accurate moment tensor analysis for thirty recorded
earthquakes in the area and showed that most of the
earthquakes have a non-shear component in their focal
mechanisms. They suggested that the sources might be
explained by combinations of tensile cracks and shear
movements accompanied by fluid flow. Cracks open in the
presence of high-temperature and pressure fluids, rapid
flow in the new void, possibly accompanied by water
flashing to steam. In general, rapid cooling along a fracture
is capable of creating thermally induced fractures (TIFs) in
the rock matrix adjacent to the fracture [25]. In any case,
it is likely that thermo-elastic responses, induced by
rapid cooling, play a major role in inducing MEQs at
The Geysers.

Lacking, prior to the work described here, was a detailed
field-wide MEQ response to a large influx of water, such as
the Santa Rosa Injection Project. New technology in MEQ
acquisition and analysis (wide band width, multi-compo-
nent), while used in parts of The Geysers for short periods
of time, was not in place prior to this project. This data can
potentially provide an improved understanding of the basic
mechanisms for the cause of the induced seismicity and the
potential for injected water to efficiently mitigate high
concentrations of non-condensable gases and corrosive
HCl. Although the routine MEQ data were being collected
and analyzed, new methods of MEQ analysis have been
developed in the last several years which could be applied
to further improve our understanding of such attributes as
location, magnitude, and source mechanisms, which in turn
will allow an overall understanding of energy release in The
Geysers and its relation to production and injection
activities.

The most established use of earthquake data at The
Geysers, the tracking of strain release and presumably
injection flow paths, could be greatly enhanced if the many
theories describing how earthquakes and injectate are
related were better constrained by observation. This
requires an improved understanding of the ‘‘triggering’’
mechanisms of both the injection and the production
related induced seismicity and of any source mechanism
peculiarities that naturally occurring earthquakes may
have in geothermal regions. The locations of the earth-
quakes have also been used to characterize patterns of
permeability in reservoirs. However, this is a very complex
issue since in different circumstances earthquakes can be
more closely associated with either relatively low or
relatively high permeability. Because characterizing perme-
ability of geothermal reservoirs is of great importance in
targeting wells and predicting overall reservoir perfor-
mance, reducing the uncertainty in such earthquake
interpretations would have great value.
A recent success [26,27] has been reported in using

MEQs as illumination sources to image physical properties
within The Geysers reservoir area. For instance, ‘‘tomo-
graphic’’ imaging of seismic wave velocity can be periodi-
cally repeated to map temporal changes in water
saturation. A decline in water saturation is often accom-
panied by a decline in production pressure and an increase
in non-condensable gas concentrations. Therefore, the
existing earthquake array was designed to also provide
the needed data to address such issues.
Finally, although seismicity is currently being used as a

reservoir management tool, it is also becoming a negative
issue with some of the more populated communities nearby
Geothermal Fields. Events with magnitude 2 and above
have raised concern to the residents near certain fields for
not only their individual, but cumulative effect. In
addition, some fear that as injection and production
increases, the events will not only increase in numbers
but increase in magnitude. In particular, the general
public’s perception is that this induced seismicity may
cause damage to structures on the surface, similar to that
caused by ‘‘natural’’ earthquakes. The communities
affected are concerned and would like to see efforts on
how and why they occur and whether one can devise any
procedures to reduce them. In addition, the operators also
want to know how the seismicity is linked to reservoir
performance and what can be learned from the seismicity.
It must be kept in mind that there are many different

mechanisms that have been proposed for inducing earth-
quakes. Induced seismicity has not only been noted in
geothermal reservoirs but in reservoir impoundment (water
behind dams), waste injections, and oil and gas operations.
Another type of induced seismicity is that associated with
hydrofracturing. In this paper, however, we are only
dealing with seismicity in naturally fractured systems
although in such areas as Soultz in France, seismicity
associated with hydrofracturing has become an issue.

2. Regional seismicity

If one examines the subsurface in enough detail one can
find fractures, joints, and/or faults almost anywhere in the
world. A fault is not defined in terms of size, (definition of a
fault is a displacement across a fracture or fracture zone),
however, most mapped faults range in size from very small
(few meters) to very large (hundreds of kilometers long).
The size of an earthquake (or how much energy is released)
depends upon how much slip occurs on the fault, how
much stress there is on the fault before slipping, how fast it
fails, and over how large an area it occurs. In most regions
where there are economic geothermal resources, such as in
the western United States, there is usually tectonic activity.
For example, Fig. 1 is a map of northern California and
part of Nevada showing the location of earthquakes from
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Fig. 1. Seismicity from 1900 to 2005 (from magnitude 3.0 to 5.0) relative to some of the Western US Geothermal Fields (from UCB Seismographic

Station).
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1900 to the present with magnitudes from 3.0 to 5.0. Also
shown are some of the geothermal areas. It is not surprising
that if the stresses are manipulated through injection and
withdrawal of fluid that seismicity may change in these
tectonic areas. Large or damaging earthquakes tend to
occur on developed or active fault systems. In other words,
large earthquakes rarely occur where there is not a fault
large or long enough to release enough energy. It is difficult
to create a large new fault because there is usually a pre-
existing fault that will slip first, rather than a new fault
being created.

A critical question that needs to be addressed is how
injection will affect the seismicity, what does it imply for
injection strategy, and how will it impact the local
community as well as field operations. The Geysers is a
prime candidate for enhanced geothermal systems (EGS)
due to the very high heat content (especially the northwest
Geysers) and a general lack of fluid. Injection is one of the
few economic means to mine this heat (versus subsurface
installed heat exchangers for example). The northwest
Geysers has had production in the past, but over the last
several years has been shut down and is now the target of
increased production due to future injection. We view The
Geysers in general as a laboratory for induced earthquakes
due to its broad range of seismicity (from less than zero to
above magnitude 4, as well as for the large number of
events, from 2000 to 3000 locatable events per month). In
addition, the northwest area is a unique opportunity to
obtain the data before a large injection and increased
production begins.
3. Objective of microearthquke monitoring work

There are two prime objectives of this work: (1) to
understand the impact of EGS operations on induced
seismicity and its environmental impact on the surrounding
community. (2) To use microearthquake monitoring to
intelligently manage the effects of fluid injections and
stimulations to aid in the optimization of EGS.
These two objectives are related but separate. In the

first objective we are trying to understand at what level
the seismicity becomes a hazard to the community (and
possibly the geothermal operations) and how can one
possibly mitigate the hazard without severely reducing
the output of the field. In the second objective we are
trying to understand the relation between the reservoir
properties (physical and chemical) and the link to
seismicity and what the seismicity is telling us about
those properties in order to optimize and manage the
reservoir. Both objectives must be met to meet overall EGS
objectives.
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4. Data collection and processing

The purpose of this effort was to design and install a
seismic monitoring system covering all The Geysers and its
immediate surroundings with spatial resolution and detec-
tion threshold comparable or superior to the current array
being maintained by the operators of the field (Calpine
Corporation). That array is an analog system with voltage-
controlled oscillators (VCO) and discriminators using
mainly single vertical component sensors. A second array
of stations covering The Geysers is the network of stations
operated by the United States Geological Survey (USGS),
again mainly vertical component with a bandwidth of less
than 50Hz. The system put in place that collected the
current subject data was installed in two phases. The first
phase installed twenty-three state-of-the-art, three-compo-
nent short period seismometer sites continuously digitally
(24 bit) telemetered at 500 samples per second (sps) for
each of three channels to a central acquisition PC which
would automatically trigger on events, pick arrivals, locate
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LBNL array is about magnitude zero. In September 2004,
a large fire swept through the southeast Geysers and
destroyed several stations. A reconfiguration in 2005 left
the five Aidlin stations and 18 stations covering the reset of
The Geysers for a total of 23 stations. This did not affect
the threshold of location however.
To achieve the processing goals we needed to locate the
earthquakes as well as possible, in both time and space, yet
do so with a large numbers of events. We have demon-
strated in past work at The Geysers that we can locate
events to within 50m of precision and 100m of accuracy in
The SE Geysers by using the technology used in this project
[17]. We also needed to detect and locate events down to
very small events, possibly down to magnitude zero, or
lower. We felt that this level of precision and accuracy was
necessary Geysers wide to have the quality and volume of
data to meet our objectives. The analysis and processing
carried out consisted of ‘‘routine locations’’, magnitude
determination and correlation with the injection para-
meters to establish relations between seismicity and
reservoir performance. The general operation of the data
flow is as follows: an event is defined as valid if six or more
stations detect a trigger (a trigger is present if the short
term average of a 16-point rectified average of the data
exceeds the long term average (4096 points) in a 0.5 s time
window). This procedure follows the processing stream
developed by [28]. The P-arrival times are then gathered
(with criteria set out by [2]) and are used to locate the event
with a 1-D model. In addition to the 1-D model, a three-
dimensional inversion using cubic splines was also used to
invert for a velocity model and locations. Fig. 5 shows the
difference in locations when one uses two different starting
models for a three dimensional inversion. For 1000 events
the residual difference of locations is mostly less than 100m
(length of each line), with no particular preference in
direction (circle in Fig. 5). There are lines longer than
100m but those events are mostly for events on the edge of
the array. It seems that due to the large number of events
are masking the heterogeneity, thus making it difficult to
tell the significant difference in small changes in the velocity
model. Therefore, for the routine locations we decided to
use a 1-d velocity model (model 1).
The magnitudes are determined with an average coda

length of all the triggered stations. A duration magnitude
was determined for the events by fitting the log duration
from the LBNL events to the USGS magnitude for the
same events. The magnitude is estimated for each event by

Magnitude ¼ 0:37 log 10 ðdurationðsÞÞ � 1:39. (1)

The duration is defined as the time at which the short-
term average drops below 1.25 for more than 0.25 s, i.e.,
following [2].
The location, P-times, magnitude and waveforms are

then sent to the USGS via internet and placed on their
internet site. In addition, all events located are then sent to
the larger database at the University of California/USGS
Northern California Data Center (NCDC).
On average over 3000 events are detected and located per

month down to a magnitude of zero in real time. Due to
the large volume of data it would be prohibitively
expensive to provide ‘‘hand’’ processed results in real time.
However, it is critical for public and scientific reasons that
this never-before-obtained resolution, three component,
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and bandwidth data set from The Geysers be made
available in a timely fashion to the research community
and other interested people. Therefore, a complete list of all
events recorded is available at the NCDC such that the
general public can request all time series and station data in
a standard format.

5. Results

Our working hypothesis for the increased MEQ activity
at The Geysers is that the seismicity is due to a diverse set
of mechanisms. That is, there is not one universal
‘‘triggering’’ mechanism (other than stress) but a variety
of mechanisms in operation that may work independently,
together, or superimpose to enhance or possibly reduce
seismicity. For example, as one injects water into the
reservoir there is obviously cooling, a change in pore
pressure (at least locally around the well) and possibly
wider ranging stress effects. There has also been a debate in
the literature about the relation between the location of the
MEQs and the location of the fluids. If the events are due
to thermal contraction from cooling the rock matrix
one would assume that would take a very long time, i.e.,
the thermal front travels orders of magnitude slower than
the fluid front. As it is, the fluid front does not travel in one
continuous manner but it fingers it way through the
fractures in a lace-like manner. Unlike the rock matrix,
fracture surfaces can cool very quickly as they are
contacted by the fluid front. By examining the spatial
and temporal rate of change in seismicity one may be able
rule out or confirm certain mechanisms. Also, as the
injections proceed effects may be felt on a field wide basis.
As the local stresses change around each injection well they
may superimpose upon the existing regional stresses or link
up to form a larger local effect that in turn may affect a
wider region within the field. Fig. 6 shows the rate of
seismicity from 1965 to the present (early 2006) at The
Geysers as derived from the USGS database. The data are
for magnitudes above 1.2 as determined from the USGS
data set at the Northern California Earthquake Data
Center. As can be seen, as the injection increases the
seismicity increases, but not at all levels. If one only looks
at the larger seismicity, it has stayed fairly constant since
1985 (magnitude 3 events). There is also no clear relation
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between total injection and seismicity, except if one looks
at all events above 1.2. Magnitude 4 events, however, have
been increasing. As can be seen there are peaks in
seismicity in 1986 and again in 1998, and more recently
due to the latest injections. It is also important to point out
that as steam production has decreased since 1986 the
overall rate of seismicity has remained fairly constant.
Recent data does show that there has been an increase in
seismicity due to the recent injection in 1997 and 2003. It
should be noted that for 2005 the seismicity has already
reached above past years levels. Fig. 7 shows the trend in
seismicity as recorded by the LBNL array between October
2003 and September 2006. The two ‘‘gaps’’ in seismicity are
due to array problems (from wild fires etc.). Also shown is
the approximate start time of the Santa Rosa wastewater
injection (up to 11 millions gallons per day). The injection
did not start exactly on any one date but was brought on
line over several months between October and December of
2003. As can be seen, there is a definite increase in
seismicity in 2004 continuing to the present. Fig. 7 shows
that initially the seismicity sharply increased, but has not
been increasing as much as injection continues.

Fig. 8 shows the injection history for the entire Geysers
field from 2000 to mid 2006. The oscillations are due to
injecting more water in the winter when it rains and there is
also less evaporation from the cooling towers, thus there is
more water available to be reinjected, compared to the
summer when it almost never rains. Therefore, there is
much more injection in the winter months than in the
summer months. This figure also shows the general upward
trend in total injection. Fig. 7, shows that at least in the
number of events (versus total energy release) that there is
not a strong correlation between the oscillation in the
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injection the oscillation in the seismicity. Fig. 9 shows 1
month of data before the Santa Rosa injection (October
2003) and a typical 1-month of data after the full injection
start (April 2004). As can be seen, there has been a definite
increase in seismicity in the area of the injection wells.
There is a definite clustering of events around the injection
wells, but there is also seismicity in other areas. As stated
before this is typical of seismicity at The Geysers, and some
or all of the increase may just be normal seasonal variation
as the non-Santa Rosa water injection ramps up. Low-
magnitude seismicity increased in the SE Geysers when
supplemental injection began there [14,15,17] and it is not
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Fig. 10. Locations of all events from October 2003 to October 2005,

Geysers wide, note the relatively lack of events in the Aidlin area, this is

prior to a large increase in injection in the Aidlin area, injection started in

late 2005. The blue boxes are the injection wells for the Santa Rosa water

injection. The large stars are magnitude 4 plus events (February 2004,

December 2004, May 2005, October 2005). The linear trends in the data

are artifacts of the automatic location.
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surprising that is occurring now with the Santa Rosa
injection. Looking at a longer period of time a similar
pattern emerges. Figs. 10–13 show The Geysers field, the
location of injection wells for the Santa Rosa injection
(blue squares), the LBNL array at the time and all the
located events in two different time periods, October
2003–September 2005 (2 years), and from October 2005 to
September 2006 (1 year). It should be noted that injection
and production is occurring field wide but there is a strong
correlation to not only the Santa Rosa injection well but to
other injection wells (see Fig. 3 for the location of other
injection wells). Also shown in these figures are the loca-
tions of the magnitude 4 events (large stars in Figs. 10 and
12). It is interesting to note that there is only a loose
correlation between the magnitude 4 events and the zones
of injection. In fact it seems that the larger events occur on
the edges of the seismicity or away from it. Fig. 11 shows
the location of only the larger events (2, 3, and 4 s) for the
first period and Fig. 13 shows the location of the larger
events in the second time period. It is interesting to note the
location of the 4’s, and also a line of 3’s in the southwest
part of the field away from the main cluster of events.
Also as part of this study, as was mentioned before, we
expanded the array in early 2004 to cover the northwest
area of The Geysers field, the Aidlin area. This is an area
where the subsurface temperatures are very hot (well over
250 1C) and there are large concentrations of non-
condensable gases. In late 2004 injection began in this area
(see Fig. 14) at relatively small volumes, it held relatively
steady at this rate until September of 2005 when the
injection sharply increased. As can be seen from Fig. 14 the
seismicity generally tracked this injection. The three large
increases in injection generally occurred after injection
changes. In some cases there is a lag in seismicity. Fig. 15
shows the plan view and an east-west cross section through
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Fig. 12. Locations of all events from October 2005 through August 2006,

Geysers wide, note the increased clustering of events in the Aidlin area

after injection has occurred. The blue boxes are the injection wells for the

Santa Rosa water injection. The stars are magnitude 4 plus events (May

2006).
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the center of the cluster as well as the trace of the well. The
seismicity is near the bottom and extending away from the
well. Also shown is the location of a magnitude 4 event that
occurred in October of 2005, near the edge of the cluster of
seismicity at a depth of 2.5 km. Another magnitude event
occurred in May 2006, in the northwest Geysers but well
away from the Aidlin cluster of events (see Fig. 12).

6. Discussion and conclusions

If past experience is any indication, the system will reach
equilibrium as time proceeds and the seismicity may level
off and possibly decrease (see Fig. 6). It has been our
experience that the initial injections will perturb the system,
cause an increase in seismicity, then level off and/or
decrease. This is again being noted in the Aidlin area. The
time period will be a function of the size of the disturbance
and the volume of the affected area. Rate of injection seems
to be an important factor also. One hypothesis worth
considering is that if the rate of increase injections is varied
(give the system a chance to equilibrate) there may be less
initial seismicity. The recent injections may reverse this
trend but it is too early in the monitoring process to
determine. Finally, what will be the impact of the
maximum event size? The maximum event at The Geysers
was in 1982 (4.6), but in the past year there have been 3
events of magnitude greater than 4.0 (see Fig. 12). The
maximum event will depend upon the size of the fault
available for slippage as well as the stress redistribution due
to injection and production. To date there have not been
any faults mapped in The Geysers which would generate a
magnitude 5.0 event or greater. This is not an absolute
guarantee that one would not happen, but does lower the
likelihood.
To realistically examine the overall benefit of injection

one must look at both the public and private sectors.
Access to high quality, state-of-the-art seismic information
will be important for both public acceptance and industry
reservoir management. For example, at The Geysers,
related geothermal industry benefits will include establish-
ment of a non-industry monitoring and reporting system
capable of providing the high quality, publicly credible,
seismic data base needed to gain public acceptance of
wastewater injection; and the basic scientific knowledge
regarding the relations between seismicity and fluid move-
ment in the crust.
The most established use of earthquake data in

geothermal regions, the tracking of strain release and pre-
sumably injection flow paths, could be greatly enhanced if
the many theories describing how earthquakes and in-
jectate are related were better constrained by observation.
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This requires an improved understanding of the ‘‘trigger-
ing’’ mechanisms of both the injection and the production
related induced seismicity and of any source mechanism
peculiarities that naturally occurring earthquakes may
have in geothermal regions. The locations of the earth-
quakes have also been used to characterize patterns of
permeability in reservoirs. However, this is a very complex
issue since in different circumstances earthquakes can be
more closely associated with either relatively low or
relatively high permeability. Because characterizing perme-
ability of geothermal reservoirs is of great importance in
targeting wells and predicting overall reservoir perfor-
mance, reducing the uncertainty in such earthquake
interpretations would have great value.

Specific to The Geysers, it is also likely that, during the
monitoring of the seismicity, information will be gained
which will be the prime motivator for operational
decisions, which will increase net production. For example,
there is a large untapped portion, which could be exploited
if proper injection and production strategies are designed.
Due to concerns regarding MEQ generation one must also
take into account the impact of injection on seismic as well
as reservoir conditions. If injected under the right condi-
tions and rates, wastewater may mitigate deleterious high
non-condensable and corrosive gas concentrations in the
reservoir. In situ mitigation will alleviate the economic and
technological issues presently preventing exploitation of
much of a high temperature reservoir characterized by high
concentrations of CO2, H2S, and HCl in the vapor
contaminates the production stream, requiring costly
surface mitigation strategies, diminished well lifetimes
and retrofitting of power plants to handle the high gas
contents.
It has been demonstrated that the seismicity is largely a

function of fluid injection, although there is not a strict one
to one correlation in time and space. We view this as
positive because it indicates that by balancing the injection
and fluid withdrawal the seismicity can be controlled. The
challenge is to optimize the production as well as control
the larger events, which may have impact on the local
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community. In terms of the seismicity being a hazard to the
community, the risk does not seem high. The region
surrounding The Geysers is tectonically stressed, cut by
numerous faults, and subject to a high level of earthquake
activity. In The Geysers field, there are no mapped faults
active in the last 10,000 years [11]. The Collayomi Fault,
running approximately 1 mile NE of the field limit, is
mapped as an inactive fault. The nearest active fault is the
Mayacamas Fault, located 4 miles SW of the field limit. On
the northeast side, the active Konocti Bay fault system is
located approximately 8 miles north of the field limit.
Therefore one must speculate if there even exists a fault
large enough in the region to create a large event.

In conclusion, injection-induced seismicity is observed in
the form of ‘‘clouds’’ of earthquakes extending primarily
downward from injection wells. At such a well, the cloud
generally appears shortly after injection begins, and earth-
quake activity within each cloud shows good temporal
correlation with injection rates. It has been demonstrated
that injection-induced seismicity is generally of low
magnitudes (p3.0). On a fieldwide basis, seismicity of
magnitudes X1.5 has generally followed injection trends,
but this correlation has not been observed for earthquakes
of magnitudes X3.0.
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