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Abstract

We present a series of computer models for Uranus and Neptune where the interior density distribution is randomly chosen.

The only constraints placed on the distribution are that the density does not decrease with decreasing radius, and that the
density distribution ®ts the observed mass and gravitational moments of these planets. Previous models of these planets all had
a density discontinuity at about 70% of the total radius. We use our models to explore the space of density distributions that ®t
the observed gravitational moments, and set limits on the position and size of this discontinuity. We ®nd that models are

possible with no discontinuity in the mantle. In addition a density discontinuity as large as 3 g cmÿ3 is possible for Uranus if
the discontinuity is inward of about 0.75 Uranus radii. Closer to the surface the discontinuity must be smaller. For Neptune, the
larger uncertainties in the measured moments result in coarser limits on the size of the density jump. Other means of limiting the

range of acceptable models are discussed. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The Voyager ¯ybys of Uranus and Neptune have
measured the gravitational ®elds of these planets with
unprecedented accuracy. Knowledge of the multipole
moments of these ®elds, in principle, should allow for
much more detailed models of Uranus' and Neptune's
interiors. In practice, however, there are a number of
di�culties. Perhaps the most important is that the
number of possible density distributions that are con-
sistent with the observed gravitational ®eld is not
small. As a result, it is necessary to make some a priori
assumptions regarding the composition of these pla-
nets in order to reduce the number of models to a
manageable level. Generally, these assumptions are
based on some picture of planet formation.

For example, we would expect the materials com-
prising Uranus and Neptune to fall into three broad
categories: (1) materials that are solid under almost all

conditions of interest in the primitive solar nebula
(``rock''); (2) materials that are gaseous under almost
all conditions in the nebula (``gas''); and (3) materials
whose phase depends on the pressure and temperature
to such an extent that they are sometimes solid and
sometimes gaseous (``ice''). One could then use argu-
ments about how these materials were incorporated
into the planets to set some limits on their distribution
and relative abundance.

Simple models where these three categories are seg-
regated into separate shells (with ices being allowed to
mix with the H2 and He in the gas shell) give the result
that the ices are far more abundant relative to rock
than can be accounted for by any reasonable cosmogo-
nic scenario (see, e.g. Podolak and Reynolds, 1987).
As a result, a number of investigators have considered
models where the ratio of ice to rock is ®xed at some
value consistent with cosmic abundances, while the
abundance of hydrogen and helium is allowed to vary
with radius in such a way as to mimic the density of
an ice shell surrounded by a hydrogen rich atmos-
phere. A number of di�erent models are reviewed in
Podolak et al., 1991. In any case, it is clear that there
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are many plausible compositions for these planets, and
there is no clear way to choose amongst them. As a
result, any theoretical investigation that is based on a
particular choice of composition will be limited in its
generality.

A second di�culty has to do with the internal heat
¯ow of these planets. Although Neptune, like Jupiter
and Saturn, emits considerably more heat than it
receives from the sun, Uranus has essentially no intrin-
sic heat source. This seems to imply that the internal
temperatures di�er from the adiabat usually assumed
in such calculations (see Podolak et al., 1991 and the
references therein). This too will have consequences for
the computed equation of state, and as a result, for
the density computed for a given pressure.

Because of these ambiguities about the behavior of
material in Uranus' (and Neptune's) interior, Marley
et al., 1995 (hereafter called Paper 1) decided to
forego preconceived notions of what the composition
should be, and look for which criteria a density dis-
tribution needed to satisfy, in order to produce a
model of Uranus or Neptune which ®ts the observed
mass, radius, and gravitational moments. Their
approach was to compute random density distri-
butions and, by analyzing those that gave ®ts to the
observed parameters, to decide what properties
characterized them.

One of the drawbacks of this work, was that a ran-
dom density distribution has, by its very nature, only a
small chance of ®tting the observations. As a result,
certain additional restrictions were placed on the
models, lessening their generality somewhat. Nonethe-
less, the authors were able to show that the restricted
set of density distributions that did ®t, implied a gra-
dual decrease in the hydrogen±helium abundance with
increasing depth in the planet. As a result of the pro-
cedure used in Paper 1, the density distributions pro-
duced by this procedure all had an overall appearance
similar to those found by more conventional calcu-
lations.

In this paper we continue to study random density
distributions, but with the goal of ®nding density dis-
tributions that are very di�erent from those studied
earlier. To this end we have employed a more e�cient
algorithm for ®tting the observational constraints. This
allows a more complete mapping of the model space.
Starting from a random distribution that gives the cor-
rect mass and radius, we rearrange the mass (again
with a large measure of randomness), so that a given
moment of inertia is reached. This guarantees that the
gravitational moments will be close to those required.
We thus have a much better chance of ®tting those
moments. The observed values for the relevant par-
ameters are presented in Table 1. The data are taken
from Hubbard et al. 1995. In Section 2 we describe the
algorithm in more detail. In Section 3 we present the

results, in Section 4 we discuss the results, and in Sec-
tion 5 we present our conclusions.

2. The random model algorithm

We divided up the mass distribution of the planet
into a series of concentric shells. For convenience, the
shells were all chosen to have equal volumes (in prac-
tice, to avoid particularly large radii for the innermost
shells, some shells were given volumes of 0.25 or 0.5 of
the standard volume, while others had volumes of 1.5
times that standard. These weighting factors were
allowed for in the mass redistribution described below.
An initial density distribution was chosen as follows.
The density of the outermost shell was taken to be
equal to some small value. In keeping with the spirit
of this work in avoiding detailed assumptions about
the composition, we chose a ``generic'' value of the
density of the outermost shell; 10ÿ4 of the planet's
mean density. In practice, this choice did not a�ect the
®nal models, since the density very quickly increased
to higher values. For the Uranus models the density of
the outer layer was taken to be 1.27 � 10ÿ4 g cmÿ3,
while for Neptune a value of 1.64� 10ÿ4 was chosen.

We subtracted the mass of this shell from the total
mass of the planet, and the volume of the shell from
the volume of the planet. We then divided the remain-
ing mass by the remaining volume. If we assume that
the density distribution inside the planet increases
monotonically towards the center, the resultant density
is an upper limit to the density of the next shell, r i+1

max.
The lower limit for the density is that of the previous
shell, r i+1

min=r i.
The density of the next shell was chosen to be some

random value between these two extremes:

ri�1 � ri � a�ri�1
max ÿ ri�1

min � �1�
where a is some random number between 0 and 1.
This process was continued until all the shells but the
innermost had been assigned values of density. The
density of the innermost shell was chosen to have
whatever value was necessary so that it contained all

Table 1

Observed parameters

Parameter Uranus Neptune

Mass (1029 g) 0.868 1.024

Equatorial radius (km) 25,55924 24,764220

Rotation period (hrs) 17.2420.01 16.1120.05

J2� 106 351623 353829

J4� 106 ÿ31.925 ÿ38210

Mean density (g/cc) 1.27 1.64
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of the remaining mass. In this way an initial density
distribution was chosen that guaranteed the proper
mass.

In practice this process presents a small di�culty.
After only a very few shells, the randomly chosen den-
sity takes on something very close to its maximal
value, and from then on the density remains essentially
constant. In other words, the initial models all look
very similar, with a sharp density rise in the outermost
layers to a constant density interior. This can be cor-
rected by limiting the random number, a, to something
considerably less than 1. Initially we simply cubed the
number produced by our random number generator.
We found, however, that the density in the outer layers
still increased su�ciently quickly so that a whole class
of models was omitted. In practice the random number
was raised to a higher power (which was kept constant
from the surface to the center for any given trial). We
found that powers between 9 and 14 were su�cient to
span the space of allowable models. We tried higher
powers as well, but at that point, the density increased
so slowly as a function of radius, that no additional
models could be generated.

Although this process guarantees the correct mass, it
does not necessarily give the correct gravitational
moments. In order to make the search for models with
the correct moments more e�cient, we ®rst tried to
®nd models with a suitable moment of inertia. This
procedure has the advantage that the computation of
the gravitational moments for a given density distri-
bution involves the numerical solution of an integral
equation. This is an iterative process which is quite
time consuming, and does not allow for e�cient
searches. The moment of inertia is much easier to com-
pute, and so the search was carried out to ®nd a
model with this parameter correct. Afterwards the
gravitational moments for the model were computed
and compared with observations. Since the moment of
inertia and the gravitational moments are not identical,
®tting one does not guarantee ®tting the other, but it
does bring us into the required neighborhood. An in-
itial mass distribution was therefore generated as
described above, and the moment of inertia was com-
puted. If it was equal to the desired value, the gravita-
tional moments were computed. If it was not equal to
the desired value, the distribution was perturbed
slightly in such a way that the mass would remain con-
stant, but the moment of inertia would move closer to
the required value.

The mass rearrangement was achieved by randomly
choosing both the inner and outer radii of the region
from which mass was to be moved. The initial moment
of inertia was always found to be higher than the
desired value, so the mass of each of the shells in this
region was reduced by a small, prescribed, amount.
The same amount of mass was added to an equal

number of shells starting from the center. Because the
shells had equal volumes (after allowing for the
weighting factors described above), the total mass
remained unchanged. This process was repeated itera-
tively until the desired moment of inertia was achieved.
At this stage we had a model with a density distri-
bution that both gave the correct mass, and a reason-
able moment of inertia. The gravitational moments
were computed using a level surface approach (Zhar-
kov and Trubitsyn, 1978). The expansions were carried
out to third order (up to and including J6). More
details are given in Paper 1. If the gravitational
moments were not within the error bars of the
observed values, a new initial distribution was gener-
ated.

There is an additional advantage to this method.
For a given initial mass distribution, we can vary the
moment of inertia to which the model is a ®t. In this
way it is possible to perturb an initially random den-
sity distribution and explore a range of models derived
therefrom, in particular those with a desired J2.
Although it may be argued that the procedure of ®t-
ting to the moment of inertia necessarily removes, to
some degree, the randomness of the mass distribution,
the fact remains that we were able to produce models
which ®t all of the observed parameters, and which
had density distributions which di�ered both from one
another and from any previously published distri-
butions. Since our main objective was to explore the
range of possible models, the e�ciency of this algor-
ithm more than compensates for its being less than
truly ``random''. We present some of these models
below.

3. Model results

We produced some 2000 models of Uranus with a
moment of inertia in the expected range. Of these,
some 150 matched the observed values of the gravita-
tional moments to within the published error bars.
This is a signi®cant improvement over the success rate
in Paper 1, although it was achieved at the expense of
®rst ``massaging'' the initial density distribution to get
a reasonable moment of inertia. In addition, since in
many cases, the same initial distribution was run sev-
eral times for di�erent moments of inertia, a direct
comparison of our statistics to those of Paper 1 is not
possible.

While the J2 of a great many models was correct,
their J4 was too negative. This is due to the fact that
J4 is particularly sensitive to the density of the outer-
most layers, while J2 is sensitive to a larger volume of
the planet (see e.g. Hubbard, 1974). Smooth redistribu-
tion of the mass allowed our code to converge to a
desired J2, but the density distribution almost always
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had too much mass in the outermost layers, and the
absolute value of the associated J4 was always too
high.

In order to lower the absolute value of J4, a density
discontinuity was introduced in Paper 1. This disconti-
nuity was in addition to the one marking the boundary
between the high density region at the center of the
planet (core) and the surrounding region (envelope),
and usually appeared at about 0.7 planetary radii.
More standard models also found that such a disconti-
nuity (or at least a very rapid density change with
radius) was necessary for ®tting the observed moments
(see Podolak et al., 1991; Wisdom, 1997). We therefore
allowed for such a discontinuity as well. The method
for introducing this discontinuity was as follows. A
shell was chosen at the place where we wished to intro-
duce a discontinuity. When iterating to the desired
value of the moment of inertia the mass was re-
arranged as before, but only a fraction, f, of the mass
to be moved was rearranged in this way. The rest was
distributed evenly among all the mass shells interior to
the chosen shell. This causes a density discontinuity at
the chosen shell whose size is proportional to (1±f ). In
this way we were able to explore the e�ect of varying
both the position of the discontinuity and its magni-
tude.

Fig. 1 shows a series of models for a density jump
at a radius of 0.79 Uranus radii. Plotted are J2 and J4
for each of the models along with the observational
limits for these parameters (vertical solid line). The
models belong to ®ve classes having density jumps at
r=R � 0:79 of 0.13 (double triangles), 0.78 (circles),
2.08 (pluses), 2.21 (rectangles), and 2.47 (triangles) g
cmÿ3 respectively. As can be seen from the ®gure,
models with a jump of 2.21 g cmÿ3 and greater con-
sistently have too high a J2. There is too much mass in
the outer layers, and one cannot get models with a low

enough J2. In addition, J4 is too negative. A density
jump of 2.08 g cmÿ3 is barely su�cient, while smaller
discontinuities, even as low as 0.13 g cmÿ3, also give
models that ®t the observations. As can be seen from
the ®gure, only a small fraction of the models com-
puted, ®t the moments to within the observed error
bars. Other choices for the position of the discontinu-
ity gave similar results. In what follows we discuss
only those models which ®t all the observed par-
ameters to within the error bars.

There are two things that must be kept in mind with
regard to this discontinuity. The ®rst is that although
our method generates a discontinuity at the position
we prescribe, it does not prevent other discontinuities
from appearing as a result of the randomness of the
distribution. The second point is that although a par-
ticular model may not have a formal discontinuity in
the density, there may still be a rapid, but continuous,
increase in the density. Models of this type have been
computed for a realistic equation of state by Stevenson
(see Podolak et al., 1991), and for a model with a den-
sity distribution described by Chebyshev polynomials
(Wisdom, 1997). Fig. 2a shows the density distri-

Fig. 2. (a) Density as a function of radius for two Uranus models

where no density discontinuity was assigned. (b) Two additional

models of Uranus with no assigned density discontinuity.

Fig. 1. J4 as a function of J2 for random models computed with a

discontinuity at r=R � 0:79 for density jumps of 0.13 (double tri-

angles), 0.78 (circles), 2.08 (pluses), 2.21 (rectangles), and 2.47 (tri-

angles) g cmÿ3 respectively.
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butions for two models of Uranus for which we have
prescribed a zero (i.e. no) discontinuity in density.
Both models ®t the observed gravitational harmonics.
As can be seen from the ®gure, there are still consider-
able discontinuities due to the randomness in the
choice of the original distribution. Thus prescribing a
zero discontinuity is not a guarantee that the density
distribution will, in fact, be continuous.

Fig. 2b shows an additional two models which ®t
the gravitational moments. The one with the light
squares still has a slight density jump at r=R � 0:82,
while the one marked by the dark ovals has an essen-
tially continuous density distribution until a normal-
ized radius of about 0.3 is reached. This latter model
shows that the gravitational moments alone do not
require a density discontinuity in the envelope, and a
continuous envelope can be consistent with the
observed moments.

The slow increase in density through the envelope
has another consequence. The envelope does not con-
tribute su�cient mass to the planet, and this shortage
must be made up by a dense core. In this particular
case, the core density is 31 g cmÿ3 at the center. This
is quite high, and corresponds to the density of olivine
at a pressure of0130 Mbar (13 TPa). Pure iron would
give such a density at 065 Mbar (6.5 TPa), and pure
gold at 04 Mbar (400 GPa). Certainly considerations
based on the equations of state of reasonable materials
under high pressure can be used to further winnow out
unlikely models, but at this stage we merely wish to
map out the extremes of the density distributions
which can ®t the observed gravitational moments.

Fig. 3 shows the limits we have found for the maxi-
mum density jump for models of Uranus (x) and Nep-
tune (+). Although we cannot claim to have
exhaustively mapped the space of possible models, we
feel that these boundaries are representative of the
actual limits on possible distributions for the interiors
of these planets. We have plotted only the region

0:4 < r=R < 1 in order not to confuse the density jump
in the envelope with the possible presence of a core.
The error bars on the observed values of both J2 and
J4 for Neptune are considerably larger than those for
Uranus, so the limits on the allowed density jump are
larger as well. In addition, because of the uncertainty
in J2 for Neptune, the region inward of r=R � 0:6 is
not well constrained. This explains why the maximum
density jump continues to increase for decreasing r=R:
For Uranus, however, where the value of J2 is very
well constrained, there actually appears to be a slight
downturn in the maximum allowed density jump. This
seems to be due to the fact that for a density jump
deep in the envelope, the larger the jump, the less mass
is left in the outer envelope. In order to keep the total
mass of the planet equal to the observed value, the
density can only decrease slowly as r=R approaches 1.
As a result, the density in the outermost layers is too
high, and J4 is too negative. Thus too large a disconti-
nuity is precluded.

Once we get su�ciently close to the center, the ad-
ditional mass added by the discontinuity is not large
enough to a�ect the outer layers, and a large disconti-
nuity (the core) is allowed. Presumably, we will see a
similar e�ect for Neptune when its gravitational
moments are more precisely determined. At large nor-
malized radii there is also a downturn in the maximum
value of the density discontinuity. This is due to the
fact that near the surface the density is of necessity
low, and a large jump is simply not possible.

4. Discussion

For the random models of Uranus and Neptune
which we have computed, the interior of Uranus is
much better constrained, and we have been able to set
interesting limits on the size and position of any sharp

Fig. 4. Three density distributions for Uranus that ®t the mass and

gravitational moments.

Fig. 3. Upper limit of the allowed density discontinuity as a function

of position. For both Uranus and Neptune the lower limit is zero.
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change in the density distribution of the interior. Simi-
lar limits can be set for Neptune, but they are much
less restrictive. The question then becomes whether
there are any other criteria that might allow us to
eliminate some of these possibilities as unphysical, and
thus further constrain the parameter space.

We have already seen that one possible approach is
to exclude all those models with too high a central
density. Clearly some additional work is needed to
clarify exactly what limits are ``reasonable'' for this
parameter. A second possibility can be seen in Fig. 4.
Here we have three models of Uranus which ®t the
observed parameters. One model, marked by rec-
tangles, has a central density that is comfortably low,
perhaps even too low. But what is more of a problem
is the large region of constant density. Since the press-
ure must increase as r decreases, there will be a very
large change of pressure over which the density will
remain constant. This could only happen if the tem-
perature increased very sharply throughout this region.

The pressures associated with a particular density
distribution can be computed by integrating the
equation of hydrostatic equilibrium:

dP

dr
� ÿGM�r�r

r2
�2�

and that of mass conservation:

dM

dr
� 4pr2r �3�

In the above, P�r� is the pressure at a given radius,
r(r ) is the density at that point, and M�r� is the mass
contained in a sphere of radius r. Fig. 5 gives the
pressure±density relationships for the models shown in
Fig. 4. Also shown are curves for ``rock'', ``ice'', and
an adiabat through solar composition material. The

equations of state for ``rock'' and ``ice'' are taken from
Podolak and Cameron (1974) and are for zero tem-
perature. Unless the temperatures in the interiors of
Uranus and Neptune are very high indeed (see below),
the thermal contribution to the equation of state
should be small. The equation of state for the solar
composition adiabat is for a 1-bar temperature of
70 K, and is computed according to the prescription
given in Podolak and Cameron (1974).

For the model designated by the rectangles, a com-
putation of the pressure±density relationship shows
that the pressure changes from 0.3 Mbar to 4 Mbar
while the density changes from 3.1 to 3.2 g cmÿ3. For
comparison, at zero temperature, a typical ``rock''
changes its density from 4.2 to 7.3 g cmÿ3 while a
solar mix of H2O, NH3, and CH4 changes its density
from 1.8 to 4.0 g cmÿ3 in this pressure range.

A sharp temperature rise would account for this
behavior, but it would have to be very sharp indeed. If
we assume that the temperature at 0.3 Mbar is low,
then a density of 3.1 g cmÿ3 corresponds to a mix of
30% ice by mass and 70% rock. Assuming that this
mixture remains constant, and the density rises to 3.2 g
cmÿ3, the temperature would have to rise to approxi-
mately 105 K in order to provide the appropriate
pressure. Such a large temperature gradient should
give a much larger heat ¯ux than is currently observed
for Uranus, and this would seem to be grounds for
eliminating this particular model as a representation of
Uranus' interior.

The pressure±density relationships for the other two
models are also shown. The one represented by tri-
angles also shows a large range of pressure over which
there is a negligible density change, while the curve
marked by the ovals behaves more like ordinary ma-
terials (except at the very highest pressures), and may

Fig. 6. Density distribution for a Uranus (solid curve) and a Nep-

tune (dashed curve) model which ®t the mass and gravitational

moments, and have similar interior densities. The solid ovals are den-

sity±radius points for a Uranus model computed based on realistic

equations of state.

Fig. 5. Pressure±density relationships for the three models shown in

Fig. 4. The symbols designating the di�erent curves correspond to

the symbols of Fig. 4. The three solid curves are the equations of

state for rock, ice, and an adiabat through a solar mix (marked H/

He).

M. Podolak et al. / Planetary and Space Science 48 (2000) 143±151148



be within acceptable limits. Further elaboration of the
limits that can be placed on the behavior of the
equation of state should allow us to exclude additional
candidate models. Such studies will allow us to inter-
pret those density distributions that are physically
plausible. These ideas will be pursued in future work.

One additional method of limiting the number of
acceptable models is by assuming that Uranus and
Neptune have similar internal structures. This is,
admittedly, a debatable criterion, since the planets
have very di�erent heat ¯ows. Still it might be reason-
able in view of the similarity of their radii, masses, and
location in the solar system, and we present it merely
as a possibility. With such an assumption, we need
only consider those density distributions that appear in
models for both Uranus and Neptune. An example of
such a pair is shown in Fig. 6. The solid curve is the
density distribution for Neptune, while the dashed
curve is for Uranus. For comparison, a density distri-
bution for Uranus computed based on a standard
equation of state is also shown (dots). Fig. 7 shows the
pressure density relation for the two models shown in
Fig. 6. Also plotted are pressure density curves for
``rock'', ``ice'' and a solar mix of hydrogen and helium.
As can be seen, the density distributions in both pla-
nets approximate those expected for realistic materials,
although the Neptune curve is probably too ¯at. If no
model of Neptune can be found which both has
reasonable equations of state, and has a density distri-
bution similar to the Uranus model, one might argue
that these are grounds for eliminating the Uranus
model as well.

There is another piece of analysis that can be done
on these models. We have computed the quantity
rdP=dr at zero temperature for the substances: H, He,
CH4, H2O, C, CO, O, SiO2, Si, Fe2SiO4, FeO, and Fe
for pressures between 1 and 100 Mbar, using the
equations of state of Salpeter and Zapolsky (1967) and

Zharkov et al. (1978). Although both the density and
its pressure derivative di�er between the two equations
of state, the product of the two is remarkably con-
stant. For the pressure range cited, this product stays
constant to within a factor of a few for each of the
substances listed, although the value of this product
does increase with increasing molecular weight of the
molecule. The values are given in Table 2. Using this
fact we can argue as follows: We de®ne the mean den-
sity at a point inside the planet via

hr�r�i � 3M�r�
4pr3

�4�

Then, solving for M�r�=r3 and substituting this into
Eq. (2) gives

dP

dr
� ÿG4p

3
rhr�r�ir�r� �5�

and, assuming that the equation of state is independent
of temperature

dr
dr
� dP

dr

dr
dP
� ÿ4pG

3
hr�r�irr�r� dr

dP
�6�

Now for a monotonic density distribution,
hr�r�irr�r�: It is also true that hr�r�irhr�R�i, where
R is the radius of the planet. This allows us to put a
lower limit on j dr=dr j , namely����drdr

����r4pG
3

rr
dr
dP

maxfr�r�, hr�R�ig �7�

If the density distribution is given (by the random
models presented here, for example), and one can
make some reasonable guess as to the composition,
then at any point in the planet we can set a lower limit
on the slope of the density distribution near that
point. The important caveat here is that we must
assume that the temperature is low enough so that the
thermal contribution to the pressure can be neglected.

Table 2

Values of rdP=dr for di�erent substances

Substance Mean atomic weight rdP=dr

H 1.01 1.5ÿ2� 10ÿ13

He 4.00 0.9ÿ1� 10ÿ12

CH4 3.21 0.8ÿ1.4� 10ÿ12

H2O 6.01 1.5ÿ3� 10ÿ12

C 12.01 1.5ÿ2.5� 10ÿ12

CO 14.01 3ÿ6� 10ÿ12

O 16.00 2ÿ3� 10ÿ12

SiO2 20.03 2ÿ8� 10ÿ12

Si 28.1 3ÿ6� 10ÿ12

Fe2SiO4 29.1 0.8ÿ1.8� 10ÿ11

FeO 35.9 0.4ÿ1.8� 10ÿ11

Fe 55.8 0.5ÿ1.6� 10ÿ11
Fig. 7. Pressure±density relationships for the distributions shown in

Fig. 6. Also shown are the equations of state for rock, ice, and a

solar adiabat.
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This should be true deep in the planet's interior, where
the pressures are su�ciently high.

As an example of the e�ect of temperature in these
regions, at 1 Mbar for Fe at T = 0, the Salpeter-
Zapolsky (SZ) equation of state gives a density of
8.10 g cmÿ3. At a temperature of 104 K, using a simple
Debye model, we can estimate the thermal contri-
bution to the pressure as PT=200 kbar. Keeping the
total pressure constant at 1 Mbar, and lowering the
zero-temperature pressure to 800 kbar, lowers the den-
sity to 7.75 g cmÿ3, a correction of some 4%. At 10
Mbar and 105 K, the correction to the density is 13%.
In both cases the expected temperatures at these press-
ure levels are much lower. For water, the corrections
at these pressures and temperatures are 5% and 18%
respectively. In other words, thermal e�ects on the
density should be of the order of 10%. On the other
hand, the value of rdP=dr at a particular pressure can
di�er from the mean in Table 2 by as much as a factor
of 2.

We can now apply this criterion to the Uranus
model shown in Fig. 7. In the ``core'' region, the den-
sity at the edge of the core is 18.5 g cmÿ3, and if we
take a value of rdP=dr � 10ÿ11 dynes cmÿ2, consistent
with Fe and other core-forming material, the density
at the very center must be at least 19.0 g cmÿ3. This is
not terribly di�erent from the assumption of constant
density, so that the model is self-consistent in this
sense. On the other hand, if we look at the region
between 0.53 and 0.85 planetary radii, the density
should increase much faster than it does. For
rdP=dr � 10ÿ11, and a density at r � 0:85R of 1.07 g
cmÿ3, the density at r=0.53R should be at least 6.03 g
cmÿ3. The model gives 1.99. This is too large a di�er-
ence to be accounted for by uncertainties in the value
of rdP=dr: On the other hand, if we take rdP=dr �
2� 10ÿ12 which is more consistent with ``ice'', the
theoretical density at this point reduces to 2.06, a
di�erence which is easily accounted for by the uncer-
tainty in rdP=dr:

For the Neptune model in Fig. 7, a similar analysis
gives an increase across the core of 0.6 g cmÿ3. This
too is small compared with the density of the core.
Between r � 0:51R and r � 0:77R, the density should
increase from 1.9 to at least 6.6 g cmÿ3 for ``rock'' and
to at least 2.8 g cmÿ3 for ``ice''. The actual model
value is 2.6 g cmÿ3, too low for either composition.
This could be indicative of a temperature e�ect, or of
the fact that the molecules comprising this layer have
a mean atomic weight even lower than that of water.
If we wish to assume that both Uranus and Neptune
have similar compositions in this region, then it seems
that Neptune's interior must be hotter here. Perhaps
this is a clue to why Neptune has an internal heat
source while Uranus does not. Detailed analyses along
these lines should help to provide insights for a more

judicious choice of compositional models to explore in
detail.

5. Conclusions

We have computed models of Uranus and Neptune
based only on the assumption that the density distri-
bution in these planets is monotonic, and the require-
ment that it ®ts the observed mean density and the
gravitational moments, J2 and J4. This procedure pro-
duces density distributions signi®cantly di�erent from
those computed from an a priori choice of compo-
sition. We have shown how general properties of the
equation of state may be used in conjunction with
these models to draw inferences about possible compo-
sitions. In addition, by exploring the space of density
distributions that ®t the observational constraints, we
have been able to place limits on the size and position
of possible discontinuities in the density. Aside from
the obvious density discontinuity at the core, we found
that it is possible to construct models of both Uranus
and Neptune that had no additional density disconti-
nuity in the envelope. This includes models with a
much smoother density distribution in the envelope
than has previously been computed (Fig. 2b), although
the equations of state represented by these density dis-
tributions most probably do not refer to realistic ma-
terials.

These smoother models have an additional signi®-
cance in that they are related to the maximum amount
of hydrogen and helium that can be put into these pla-
nets. A given model density pro®le can be achieved
with a variety of compositions. In particular, we can
view it as a mixture of ``rock'' and ``ice'' in solar pro-
portions combined with hydrogen and helium ``gas''.
The same pro®le can be seen as containing even more
``gas'' if we interpret it as a mixture of only ``rock''
and ``gas''. Because of the high compressibility of the
``gas'' relative to the ``rock'' and ``ice'', those models
which can be seen as having more ``gas'' in the deeper
layers will be interpreted as having a higher overall
``gas'' content. In other words, we expect models with-
out a density discontinuity (i.e. models which do not
have a clear demarcation between a region of high
``gas'' content and a region of low ``gas'' content) to
allow an interpretation with the most hydrogen and
helium. This is indeed borne out in numerical tests on
the models. If we assume that the envelope is every-
where composed of a mixture of ``rock'' and ``ice'' in
solar proportions, and whatever amount of ``gas''
(hydrogen and helium in the solar ratio) is required to
reproduce the density pro®le, then we ®nd that the
maximum gas content (hydrogen+helium in the solar
ratio) for Uranus is about 4.2 Earth masses, and about
3.2 Earth masses for Neptune. If we assume that the
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model envelope is composed of only ``rock'' and
``gas'', we can get somewhat higher values; 5.0 Earth
masses for Uranus and 4.7 Earth masses for Neptune.
These are the upper limits to the hydrogen±helium
contents for these planets.

An additional possibility for extracting interesting
models from the set we have computed is to insist that
the overall compositions of both Uranus and Neptune
be su�ciently similar. In this way we can search for
model pairs with realistic equations of state. The pair
of such models presented above suggests that interior
temperatures in Neptune may be higher than in Ura-
nus. This might help explain the di�erences in the
observed internal heat source.

While we cannot claim that our procedure gives an
exhaustive picture of the entire space of possible
models, it has allowed us to ®nd density distributions
which ®t the observed gravitational moments, are phy-
sically plausible, and are very di�erent from those pre-
viously published. Hopefully, continued study along
these lines will give new insights into the possible
structure and composition of Uranus and Neptune.

Acknowledgements

We gratefully acknowledge the suggestions of Dr W.
Hubbard and an anonymous referee, which signi®-
cantly improved this manuscript.

References

Hubbard, W.B., 1974. Inversion of gravity data for giant planets.

Icarus 21, 157±165.

Hubbard, W.B., Pearl, J.C., Podolak, M., Stevenson, D.J., 1995.

Interior of Neptune. In: Cruickshank, D. (Ed.), Neptune and

Triton. University of Arizona Press, Tucson, pp. 109±138.

Marley, M.S., Gomez, P., Podolak, M., 1995. Monte Carlo interior

models for Uranus and Neptune. J. Geophys. Res. 100, 23,349±

23,353.

Podolak, M., Cameron, A.G.W., 1974. Models of the giant planets.

Icarus 22, 123±148.

Podolak, M., Reynolds, R.T., 1987. The rotation of Uranus, its in-

ternal structure and the process of planetary accretion. Icarus 70,

31±36.

Podolak, M., Hubbard, W.B., Stevenson, D.J., 1991. Models of

Uranus' interior and magnetic ®eld. In: Bergstralh, J., Minor, E.,

Matthews, M.S. (Eds.), Uranus. University of Arizona Press,

Tucson, pp. 29±64.

Salpeter, E.E., Zapolsky, H.S., 1967. Theoretical high-pressure

equations of state including correlation energy. Phys. Rev. 158,

876±886.

Wisdom, J., 1997. Non-perturbative Hydrostatic Equilibrium.

Preprint.

Zharkov, V.N., Trubitsyn, V.P., 1978. Physics of Planetary Interiors.

Pachart Press, Tucson.

Zharkov, V.N., Tsarevsky, I.A., Trubitsyn, V.P., 1978. Equations of

State of Hydrogen, Hydrogen Compounds, Crystals of Inert

Gases, Oxides, Iron, and FeS. NASA TM-75311.

M. Podolak et al. / Planetary and Space Science 48 (2000) 143±151 151


