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ABSTRACT 

Significant research efforts have been recently devoted to city bus transport system 

electrification and its integration into the smart city framework. A key challenge is to 

determine the optimal charging infrastructure regarding (i) the selection of terminals to be 

equipped with chargers and (ii) the number of chargers to be installed at each terminal while 

satisfying the buses' schedule and minimizing the investment cost. To address this issue, the 

paper proposes a charging system configuration optimization method based on a genetic 

algorithm, which is aimed at minimizing the number of charging terminals, the number of 

chargers per terminal and charging-related cumulative time delay of the driving missions. 

Furthermore, each route needs to be covered with at least one charging terminal to meet the 

transport system charging sustainability condition. To reduce the wide-range search space of 

the optimization algorithm and facilitate convergence, a search space reduction is conducted 

by determining the best charging terminal candidates based on a modified greedy set-cover 

algorithm. 
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1. INTRODUCTION 

Integrating fully electric buses into the city transport system substantially reduces air and 

noise pollution, lowers the bus fleet exploitation cost as the energy and maintenance cost 

sinks compared to conventional fleets, and improves passenger comfort and overall 

satisfaction. However, there are several drawbacks of fleet electrification such as lack of 

charging terminals, long charging time and relatively low driving range, and high vehicle cost 

including the cost of possible battery replacement. Many researchers have studied the 

charging infrastructure optimization problem for electric vehicles in general, focusing on 

locating the fast and slow chargers and sizing the charging terminals. For example, reference 

[1] presents a method of finding the number and locations of fast-charging terminals to 

maximize long-distance driving missions’ completion. The problem of low charger utilization 

related to inferior charging terminal placement is addressed in [2]. The same reference 

proposes charging location optimization while considering home charging accessibility, thus 

minimizing the number of trips that could not be made due to the charging constraints. An 

approach where the placement and number of distinct charging terminals are optimized and 

analysed within an active distribution network is considered in [3]. A lightning search 

algorithm for optimal location and sizing of fast charging terminals is proposed in [4] while 
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considering transportation grid power losses and investment costs. In [5] a model is built to 

predict the total number of electric vehicles and calculate the size of charging terminals to 

optimize their distribution and make them more balanced through the years in which the 

number of electric vehicles might change. The study is focused on future charging system 

maintainability based on the predicted number of electric vehicles. Reference [6] presents an 

approach of finding the optimal number of chargers and their locations while considering the 

demand. The optimization problem is solved by using a genetic algorithm with constraints 

related to travelled distance per day, charging time, and power limitations.  

This paper deals with city bus fleet charging configuration optimization resulting in the 

optimal selection of charging terminals and the number of chargers installed on those 

terminals. Charging terminals are selected for the predefined number of buses (equal to that of 

the conventional fleet) and the given bus type including the battery capacity. The distribution 

of buses on different routes is also predefined, where the buses are not considered to be 

shifted from one route to another. GPS data retrieved from the existing (Diesel) bus fleet are 

used to build up a transport model, which provides velocity and terminal dwell time data for 

every route and direction at every time interval of the day. Also, the transport model includes 

energy consumption maps for e-buses, which are determined by simulating a physical e-bus 

model over realistic high-resolution driving cycle data. The research represented in this paper 

is the follow-up to [7] where a simulation tool for planning city bus transport electrification is 

represented and [8] focused on a Markov-chain-based method synthesis of the high-resolution 

driving cycles. The driving cycle relates to the peak day in view of traffic load and weather 

conditions, thus concerning the worst-case scenario of powertrain and HVAC (heating, 

ventilation and air-conditioning) system energy consumption, respectively. Charging 

configuration optimization is based on the pilOPT multi-objective genetic algorithm provided 

in the modeFRONTIER optimization environment. To reduce the input space represented by 

the number of chargers on different terminals, the modified greedy set-cover algorithm is 

developed and used in pre-optimization. Finally, the optimized charging configurations are 

compared with near-optimal charging configurations found through expert knowledge.  

The main contributions of the paper include: (i) developing a minute-based macro-simulation 

tool for simulating city bus driving missions and related energy consumption for the defined 

driving schedule and a specified charging configuration, (ii) applying a modified greedy set-

cover algorithm for determining charging terminal candidates used to reduce input search 

space of charging configuration optimization by eliminating unpromising charging terminals, 

and (iii) proposing a macro-simulation model-based optimization framework for obtaining 

optimal charging configuration characterized by the minimum number of charging terminals 

and chargers. 

The remaining part of this paper is structured as follows. Section 2 provides an overview of 

the optimization framework. Section 3 describes the transport system macro-simulation model 

used to simulate the city bus fleet. Greedy algorithm-based optimization of charging locations 

used for search space reduction is described in Section 4. Section 5 presents the overall 

charging system configuration optimization algorithm, with the results given and discussed in 

Section 6. Section 7 presents concluding remarks and outlines future work opportunities. 

2. OPTIMIZATION FRAMEWORK 

This section provides an overview of the optimization framework shown in Figure 1 and 

aimed to determine the optimal charging configuration for a city bus transport system. The 

optimization framework consists of (i) a modeFRONTIER optimization tool based on the 
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pilOPT algorithm and (ii) a macro-simulation model of the transport-energy system that is run 

in Python in every optimization iteration. First, DOE (Design of Experiments) is defined, 

which sets the initial charging configuration and is generated by pilOPT algorithm. The 

number of chargers at every terminal is denoted by Chi, i = 1,...,n, where the subscript i 

denotes the terminal index and n is the number of terminals. It is requested that the minimum 

number of chargers per charging terminal is Nch,min = 2, while the maximum number of 

chargers is equal to the number of buses Nb coming to the terminal. This is implemented 

through the constraint Nch,min ≤ Chi ≤ Nb, with the note that if a terminal has no chargers 

installed, the number of chargers Chi is set to 0. The second constraint, RCr ≥ 1 is related to 

the number of charging terminals RCr placed at route 𝑟 ∈ [1, 𝑁𝑟], where Nr is the number of 

routes. There are three objective functions to be minimized, which are denoted by Ji, 𝑖 ∈
[1, 3] (see Fig. 1), and which relate to the total number of chargers (Nc), the total number of 

charging terminals (Nct) and the total time delay for all buses' departures during the single-day 

operation (Dtot) affected by charging and the lack of buses, where Nc and Nct are calculated 

directly from charging configuration, and Dtot is obtained from macro-simulation. The 

charging configuration is represented by the set [Chi,...,Chn], i.e. by the number of installed 

chargers at every terminal. The macro-simulation model parameters include the driving 

schedule set, S, a deadzone time, Tdz, charging power, Pch, and e-bus battery capacity, Ebatt. 

The deadzone time Tdz is the minimum time the bus should spent at the charging terminal to 

start charging, representing the time needed to park to the charger spot and plug in the 

charger.  

 
Figure 1 Block diagram of optimization framework used for optimizing the charging 

configuration  

The optimization algorithm iteratively generates a charging configuration used as an input to 

the macro-simulation model, which simulates the driving missions over the peak-load day 

based on the specified simulation parameters. The simulation results are used in the 

optimization algorithm to generate a new charging configuration, according to the constraints 

and objective functions, determined in a way that minimizes the number of charging 

terminals, the total number of chargers, and the total bus delay time affected by prolongated 

bus departure due to the charging dwell time.  
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3. TRANSPORT SYSTEM MACRO-SIMULATION MODEL 

The macro-simulation model describes the city bus transport and energy system on a daily 

basis and with a time resolution of one minute. It simulates a bus fleet containing 303 buses 

allocated to 29 routes and 25 terminals in a part of the city of Jerusalem. Each bus is assumed 

to operate only on one of the routes. Simulation outputs are post-processed to obtain detailed 

transport analysis data for every route and bus, i.e., the dwell time at each terminal, the delay 

time of driving missions, and a variety of metrics regarding the battery state of charge (SoC), 

energy-charged, and bus utilization.  

Figure 2 overviews the macro-simulation model in the form of a flowchart. In every sampling 

instant (with a sampling time of 1 minute) the algorithm checks the scheduled departure and 

arrival time for driving missions. A driving mission is allocated to the bus with the largest 

battery SoC (from the set of buses assigned to that route), while considering the constraint 

that the bus cannot leave the terminal (if equipped with chargers) if 𝑆𝑜𝐶 < 20%. If there is no 

bus with 𝑆𝑜𝐶 ≥ 20% at the charging terminal, the departure is postponed, i.e. a delay occurs. 

The driving mission travel time and energy consumption are obtained from the corresponding 

maps, which were determined (i.e., pre-processed) from the driving cycle data and e-bus 

physical micro-simulation and stored in a database over different routes and on an hourly 

basis. The bus battery SoC is updated at the end of a driving mission in accordance with the 

energy consumption of the driving mission (including the HVAC system energy consumption 

which depends on the external ambient conditions, i.e. time of the day). After the bus arrives 

at the terminal, a simple heuristic charging management algorithm is executed.  

 

Figure 2 Flowchart of macro-simulation model  
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The charging management algorithm is described by the flowchart shown in Figure 3. First, 

when the bus arrives at the terminal equipped with chargers, it gets connected to the unused 

charger if there is any. If all chargers are occupied, the bus with the largest SoC gets 

disconnected, but only if its SoC is greater than the SoC of the arrived bus. When the battery 

is fully charged (𝑆𝑜𝐶 = 95%) or the bus with 𝑆𝑜𝐶 ≥ 20% is scheduled to departure, bus 

disconnects from the charger, and the bus with the lowest SoC connects. 

 
Figure 3 Flowchart of heuristic charging management algorithm  

4. “GREEDY ALGORITHM” BASED OPTIMIZATION OF CHARGING 

LOCATIONS 

The bus transport system includes 25 terminals, which may or may not include chargers. 

Since there are two options for every terminal, there are 225 = 33,554,432 charging 

configuration combinations. Thus, it would be very time-consuming to manually find viable 

charging configuration combinations to be used in full optimization in Section 5, while 

considering route coverage constraint meaning that every route has at least one charging 

terminal. Therefore, a modified greedy set-cover algorithm for charging terminal candidates’ 

optimization is proposed in this section. The search space is reduced by decreasing the 

number of input variables, in this case the charging terminal candidates, otherwise set to all 

terminals.  

4.1. Charging candidate problem 

The charging terminal candidate problem is defined as finding the minimum number of 

charging terminals while considering the route coverage constraint. Since there may be more 

distinct configurations with the same minimum number of charging terminals the charging 

candidate problem should cover all those minimum configurations. For this purpose, a 

modified greedy set-cover algorithm is designed. The final reduced input space or reduced 

charging candidate set is determined as the union of charging terminals in all configurations 

obtained from the modified greedy set-cover algorithm. 

The charging candidate problem can be reduced to the well-known NP-complete 

(nondeterministic polynomial) problem called set-cover. Given the set and subsets of the set, 

the objective is to find the set of subsets containing the minimum number of subsets where the 

union of those subsets is equal to the set. Reducing the charging candidate problem to set-

cover means that subsets in the set-cover problem would be related to terminals containing the 

routes related to the terminal. As already mentioned, the set-cover problem is NP-complete, 

which means that it is NP and NP-hard and does not have the exact algorithm that solves it. 
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The set-cover problem can be approached by many approximation algorithms, e.g. the branch 

and bound algorithm, layering, and the greedy algorithm. In this work, a greedy set-cover 

approximation for charging candidate optimization is used. 

Since the greedy algorithm for the set-cover problem presented in [11] returns only one 

solution, while the charging candidate problem should ultimately return all charging 

configurations with the minimum number of charging terminals satisfying the route coverage 

constraint, a modified greedy algorithm is proposed. The details are given in the next 

subsection. 

4.2. Modified greedy set-cover algorithm for charging candidate optimization  

The modified greedy set-cover algorithm is used for reducing the number of charging 

terminals and is motivated by the greedy set-cover problem represented in [11]. The 

mathematical formulation of the set-cover problem is as follows: 

Given the elements of 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛}, 

       Subsets 𝑆1, 𝑆2, … , 𝑆𝑘 ⊆ 𝑈 ,                (1) 

weights 𝑤1, 𝑤2, … , 𝑤𝑘 , 

 

find  𝐼 ⊆ {1, 2, … , 𝑘} ,                                               

that 𝑚𝑖𝑛 ∑ 𝑤𝑖𝑖∈𝐼  ,                                                          (2) 

s.t. ⋃ 𝑆𝑖𝑖∈𝐼
= 𝑈 . 

The greedy set-cover algorithm is shown in Algorithm 1 below and described in [11]. It 

executes in the following steps: (i) initializes empty array of selected subsets 𝑆1, 𝑆2, … , 𝑆𝑘, (ii) 

iterates while the array of selected subsets does not contain all elements from set 𝑈 and, in 

every iteration, it selects the subset with the smallest cost. The cost function is the ratio 

between the subset cost and the number of elements contained in a subset, not added in the 

array of selected subsets. The subset weight is predefined, and it depends on the system, 

where sometimes it may be the same for all subsets, but it may also be diverse.  

 

Algorithm 1 Greedy set-cover algorithm  

The proposed, modified greedy set-cover algorithm is a version of the original algorithm, 

where modifications relate to ultimately returning all possible combinations of configurations 
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with the minimum number of charging terminals and adapting the cost function according to 

the bus transport system. The mathematical formulation of the modified set-cover problem is 

the same as for the set-cover problem shown in equations (1) and (2), while the programming 

implementation has a few modifications, as given by Algorithm 2 below.  

Algorithm 2 executes in a dynamically chosen number of iterations, and it runs as follows: (i) 

it initializes an empty set of generated configurations, (ii) starts iteration and stops when no 

new combination or configuration is found for at least 20 iterations, and (iii) in every step it 

generates weights for every subset; in this case, the subset is represented as a set of routes 

covered with every terminal, (iv) for previously generated weights, the algorithm iterates and 

builds new configuration based on the cost function that prioritizes the terminals that cover 

more routes in total and more of the uncovered routes, scaling it with the weights 

𝑤1, 𝑤2, … , 𝑤𝑘 (described later in more detail), (v) when no configuration is generated for at 

more than 20 iterations, the algorithm returns charging configurations with the minimum 

number of charging terminals. The cost function is the ratio of the sum of the total number of 

routes covered by the terminal and uncovered routes divided by the terminal weight value. 

The weights are generated by using Gaussian distribution with the mean value 𝜇 equal to 3 

and the standard deviation 𝜎 equal to 1. These values are empirically chosen to introduce 

randomness to the cost function, i.e. to generate distinct weights 𝑤1, 𝑤2, … , 𝑤𝑘, in every 

iteration resulting in more charging combinations. In the case of the same weights in every 

iteration, the algorithm would result in one configuration combination. 

 

Algorithm 2 Modified greedy set-cover algorithm  

4.3. Charging candidate optimization results  

Figure 4 shows the assignment of terminals to routes for the considered city bus system. The 

goal is to find the minimum charging configuration combinations satisfying the route 

coverage constraint (each route is covered by at least one charging terminal).  
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Figure 4 Route and belonging terminals of the considered city bus system  

Table 1 shows combinations of configurations found (i) “manually” based on expert 

knowledge and (ii) using the proposed modified greedy set-cover algorithm. Only one 

combination of charging configurations with the minimum number of charging candidates is 

found manually, while the modified greedy set-cover algorithm manages to find four distinct 

combinations, including the manually found one. The reduced input space-based 

optimizations (Section 5) consider the union of charging terminals determined by the greedy 

set-cover algorithm (marked green in Table 1). That said, the number of input variables (set 

by default to [Ch1,...,Chn] in Figure 1), i.e. terminals decreases from n = 25 to 10 which is a 

significant improvement in terms of search space reduction.  

Table 1 Charging candidate optimization results obtained by expert knowledge (i.e, 

'manually') and application of modified greedy set-cover algorithm 

 

The modified set-cover greedy algorithm has proven to be a computationally efficient space 

reduction approach, as its execution time for the given, relatively large transport system takes 

only 7 ms on the processor Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz and installed RAM 

with 8.00 GB.  
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5. OPTIMIZATION OF OVERALL CHARGING SYSTEM CONFIGURATION 

This section presents details of the overall, multi-objective optimization framework built 

around modeFRONTIER genetic algorithm pilOPT. Figure 5 shows the modeFRONTIER 

optimization scheme, which includes inputs that represent charging configuration (marked 

green), and outputs that are used in constraints and objective functions (marked red). The next 

subsections explain in detail each component of the optimization scheme. 

 

Figure 5 modeFRONTIER scheme of overall charging configuration optimization  

5.1. Objective functions 

As outlined in Section 2, the considered objective functions to be minimized include the total 

number of terminals equipped with chargers (Ncs), the total number of chargers (Nch) and the 

total city bus transport system delay time (Dtot):  

min 𝑁𝑐𝑠                                                                      (3) 

min 𝑁𝑐ℎ                                                                      (4) 

min 𝐷𝑡𝑜𝑡                                                                     (5) 

The objectives Ncs and Nch are simply determined from the charging configuration candidate 

generated in each iteration of genetic algorithm, while Dtot is calculated by the macro-

simulation model (Section 3). 

5.2. Optimization problem constraints 

As discussed in Section 2, the optimization constraints are formulated as:  

𝐶ℎ𝑖 = [0, 𝑁𝑏]/{1}, i = 1,...,n                                                    (6) 

𝑅𝐶𝑟 ≥ 1, r = 1,...,Nr                                                           (7) 

The constraint (6) specifies that the number of chargers at every terminal needs to be in the 

range from 0 to 𝑁𝑏, except 1. Namely, it is deemed to be cost-ineffective to build the whole 
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terminal charging infrastructure for only one charger. The constraint (7) represents a route 

coverage constraint meaning that every route needs to include at least one charging terminal. 

Note that since every charging terminal has at least 2 chargers, the minimum number of 

chargers available on any route is 2. 

5.3. Optimization scenarios 

Table 2 overviews the scenarios for which the optimization and related analyses will be 

carried on in the following subsections. There are four scenarios, each with its own properties 

related to pilOPT algorithm modes, number of iterations in the case self-initialized mode and 

the input space size. The pilOPT algorithm has two modes: autonomous and self-initialized 

mode, where the former stops when the Pareto frontier cannot improve any further, while the 

latter halts when a predefined number of algorithm iterations is exceeded. 

The first scenario is the basic one, where all terminals can be charging terminal candidates, 

and the optimization algorithm is running in autonomous mode. The second scenario has 

reduced input space, where the number of charging terminal candidates is reduced from 25 to 

10, as discussed in Section 4.3. The charging candidates can have the number of chargers in 

the range [2, 𝑁𝑏], while the number of chargers for no-charging candidates is set to 0. The 

third scenario involves the self-initialized mode and the reduced input space, where the 

pilOPT algorithm is initialized to the number of iterations that was automatically generated in 

the first scenario. Finally, the fourth scenario is the same as the third one, but the number of 

iterations is set to the maximum value of 20000. 

Table 2 Scenario overview  

 

5.4. Comparative analysis 

Table 3 shows which charging configuration combinations from Table 1 are found in which 

optimization scenario from Table 2. The labels Feasible and Pareto optimal designate 

whether the solution is feasible (in terms of satisfying the constraints) or Pareto optimal (the 

best at least in one objective), respectively. “Greedy combination 4” results in feasible and 

Pareto optimal solutions for all optimization scenarios, while other configuration 

combinations yield only feasible solutions and only in some optimization scenarios. 
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Table 3 Overview of the charging configuration combinations found in each model, both 

according to all feasible and Pareto solutions  

 

The reason for the success of “Greedy combination 4” has been found to lie in the effect that 

charging terminals selected in that configuration have bigger terminal dwell time (the time 

between arrival and departure) than other charging configuration combinations. According to 

Table 1, “Greedy combination 1” relies on charging terminals “s13” and “s15”, while 

“Greedy combination 4” uses terminals “s04” and “s12” for charging. Also, “Greedy 

combination 3” involves the terminal “s13”, as opposed to “s04” in the case of “Greedy 

combination 4”. The dwell time graph shown in Figure 6 indicates that the terminals “s04” 

and “s12” have significantly higher dwell time than the terminals “s13” and “s15” (approx. 18 

min vs. 10 min in average), which makes them more suitable charging candidates (higher 

charging availability). Similarly, “Greedy combination 2” involves the charging terminal 

“s15”, which has lower dwell time as opposed to “s12” of “Greedy combination 4”.  

 

Figure 6 Terminal dwell time statistics  
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6. RESULTS AND DISCUSSION 

In this section, the results for optimization scenarios defined in Table 2 are presented and 

discussed. First, optimization results are given, which are then supplemented by detailed 

macro-simulation results. 

6.1. Optimization results 

The first scenario from Table 2 is the “Autonomous complete space” scenario, which 

concerns the complete (unreduced) input space and autonomous mode of pilOPT algorithm. 

The optimization resulted 11723 iterations and it managed to find charging configurations 

with minimum 8 charging terminals and the total number of chargers in the range from [23, 

45], as shown by the 3D Pareto frontier in Figure 7a. This solution is in agreement with the 

results presented in Section 4 and Table 1, i.e. the full optimization finds the same minimum 

number of charging terminals as greedy algorithm did. The Pareto frontier in Figure 7a 

suggests that the total transport system delay time, as the third objective, can be reduced (blue 

tones) if the number of charging terminals and the number of chargers is increased.  

When reducing the input space (Figure 7b), the optimizer again finds configurations with 

minimum 8 charging terminals, but the number of chargers increase to lie in the range [30, 

35], which is suboptimal in comparison to the previous optimization scenario. Since the 

number of iterations is also significantly lower (4475 vs. 11723), this result can be explained 

by the solver getting stuck in local optima. 

When using the self-initialized mode with the pre-specified number of iterations (equal to that 

of the first scenario, i.e. 12723), the Pareto frontier shown in Figure 7c is obtained. Again, the 

configurations with minimum 8 charging terminals are found, but the total number of chargers 

is reduced to the range [18, 27]. This is a significant improvement in the comparison with the 

first and second optimization scenarios, which is due to the reduced input space. 

When using the maximum number of iterations, which is 20000, the optimization results in 

the Pareto frontier shown in Figure 7d. Here, the optimal configurations with the minimum 

number of charging terminals equal to 8 are extended to the number of chargers in the range 

[16, 26], i.e. the number of chargers can be reduced to 16 and 17 when compared to the third 

optimization scenario. However, the maximum time delay for those two configurations is very 

large (more than 5 hours vs. half an hour for the case of 18 chargers). Thus, those 

configurations are rejected, and it may be concluded that the previous scenario “Self-

initialized reduced space” could not be further improved. Its characteristic charging 

configurations marked by black circles in Figure 7c will be analysed in detail in Subsection 

6.3. 
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Figure 7 Pareto frontiers obtained for different optimization scenarios: a) Autonomous 

complete space, b) Autonomous reduced space, c) Self-initialized reduced space, d) Self-

initialized reduced space II   

6.2. Optimization procedure  

Based on the results from the previous subsection, this subsection formalises the optimization 

steps, as shown in Figure 8 and elaborated as follows: (i) Autonomous complete space 

scenario is run first in order to give the number of iterations for step (iii), (ii) Set of charging 

terminal candidates is generated by using the modified greedy set-cover algorithm, as 

explained Section 4, (iii) Self-initialized reduced space scenario is run with the number of 

iterations taken from step (i) and charging terminal candidates from step (ii), (iv) Pareto 

frontier obtained in step (iii) is used to obtain configurations with the minimum number of 

chargers and charging terminals  
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Figure 8 Optimal charging configuration model setup  

6.3. Simulation outcomes for Pareto optimal solutions  

The optimal configurations obtained in Subsection 6.1 (see Figure 7c) based on the procedure 

summarized in Subsection 6.2 (i.e., Figure 8) are analysed in this subsection based on the 

macro-simulation results. The results are compared with those corresponding to the charging 

configurations found manually, i.e. through expert knowledge (see Table 1). The purpose of 

the detailed analysis is to assess charging configurations and get a detailed overview of 

macro-simulation results (i.e. final-SoC distribution, energy-charged, number of utilized 

buses, dwell time etc.). 

6.4. Comparative results 

The macro-simulation results presented in Figure 9 contain 6 plots. The first plot shows the 

SoC at the end of the day (i.e., the final SoC) for every route. The second graph is a bar chart 

of the final SoC categories related to unacceptable (𝑆𝑜𝐶𝑓 < 0), risky (0 ≤ 𝑆𝑜𝐶𝑓 < 20%) and 

safe (𝑆𝑜𝐶𝑓 ≥ 20%) final SoC. The third plot shows the total energy charged to all buses at 

each route. The fourth plot is a boxplot representing the available charging time statistics. The 

fifth graph shows the number of utilized/unutilized buses on every route. The last (sixth) plot 

gives the boxplot statistics of the individual bus delay time for every route. 

Pareto frontier gathered from the “Self-initialized reduced space” scenario, shown in Figure 

7c, resulted in configurations that have [18, 25] chargers distributed on 8 charging terminals, 

which is the minimum number of charging terminals when satisfying the route coverage 

constraint. For the sake of simplicity, only configurations with upper and lower bounds of the 

number of chargers (designated by circles in Fig. 7c) will be simulated and discussed. Figure 

9 presents the macro-simulation results for lower-band configuration with 18 charging 

terminals.  
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Figure 9 Macro-simulation results for optimal charging configuration related to 8 charging 

terminals and 18 chargers (see left-hand side circle in Fig. 7c)  

The optimal configuration with 18 chargers is sustaining, i.e. all buses have 𝑆𝑜𝐶𝑓 > 0. The 

total/cumulative delay time per bus is reasonable, with minimum values of 1 min, and a peak 

lower than 30 minutes. Note that some routes (i.e. “r05” and “r12”) have no delayed missions. 

Thus, this configuration may be deemed as overly satisfactory. However, some routes are 

characterized by low final SoC; i.e. route “r03” has a bus with a final SoC value of around 

5%, which can be regarded as risky and can be improved by adding more chargers to a 

terminal of that route. 

Figure 10 shows macro-simulation results related to optimal charging configuration with 25 

chargers (see right-hand side circle in Figure 7c). Since the number of chargers is increased 

by 7 compared to the previous configuration, the final SoC values are higher, and accordingly 

the total delay time is somewhat reduced (Figure 10).  
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Figure 10 Macro-simulation results for optimal charging configuration related to 8 charging 

terminals and 25 chargers (see right-hand side circle in Fig. 7c)  

The configurations found through expert knowledge (i.e., “manually”) are listed in Table 4 

based on Table 1 and variation of total number of chargers. Table 4 also shows the above-

considered, optimal configurations. All the configurations have 8 charging terminals and a 

number of chargers in the range [18, 46], where the charging configuration with the minimum 

number of chargers is the one obtained by using the pilOPT optimization and analysed with 

Figure 9.  

Table 4 Manually-found and optimization-obtained charging configurations 

 

Table 5 shows comparative performance metrics based on the macro-simulation output data. 

The pilOPT charging configuration with 18 chargers is optimal in terms of investment cost, 

but it has a considerably lower final SoC value than other configurations having more 

chargers. Accordingly, there is also a significant increase in the number of arrivals with 

𝑆𝑜𝐶𝑓 < 20% than in other configurations. To this extent, the configuration pilOPT 25 should 

be preferred over pilOPT 18, and it is distinctively better than the manually found 

configuration with comparable (or even somewhat higher) number of chargers in terms of 

final SoC, delay, and energy charged statistics. 
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Table 5 Overview of macro-simulation-based performance metrics for manually selected and 

optimal charging configurations  

 

7. CONCLUSION  

A search space reduction-supported multi-objective approach of optimizing the city bus 

charging configuration system has been proposed and implemented by using the pilOPT 

algorithm of modeFRONTIER environment. The approach is summarized in Figure 8, and 

includes (i) obtaining the number of iterations from the “Autonomous complete space” 

scenario, (ii) utilizing the modified greedy set-cover algorithm to reduce the input space, i.e. 

obtain the optimal charging terminals candidates, and (iii) creating the self-initialized 

optimization model with the number of iterations set as obtained in step (i) and with a reduced 

number of charging terminals according to step (ii), (iv) analysing Pareto frontier solutions 

and choosing the one with a minimum number of chargers and charging terminals while 

satisfying other practical/operational metrics such as those related to battery state of charge 

(SoC) final value and cumulative bus departure delay. 

The selected Pareto optimal charging configurations have been compared with the ones found 

based on expert knowledge. It has been proven that the proposed optimization approach 

results in a lower number of chargers keeping the total delay time low and ensuring bus 

transport system maintainability in the view of battery state of charge.  

The future work can include optimizing the charging power rather than using a 

constant/maximum one, in order to minimize the exploitation cost in systems with varying 

electricity price through the day or local renewable, intermittent energy sources. Another 

relevant topic of future work relates to combined optimization of bus schedules and charging 

infrastructure.  

ACKNOWLEDGMENT  

It is gratefully acknowledged that this work has been supported by the European Commission 

through Horizon 2020 Innovation action project OLGA (“hOListic Green Airport”) under the 

Grant Agreement No. 101036871. The first author also acknowledges the support from a 

2022 small-scale grant program of the University of Zagreb. The authors are grateful to ROM 

Transportation Engineering Ltd., Tel Aviv, Israel for technical and data support. 

 



18 

 

REFERENCES  

1. He, Y., Kockelman, K. M., & Perrine, K. A. (2019). Optimal locations of U.S. fast 

charging terminals for long-distance trip completion by battery electric vehicles. Journal 

of Cleaner Production, 214, 452–461. 

2. Pan, L., Yao, E., Yang, Y., & Zhang, R. (2020). A location model for electric vehicle 

(EV) public charging terminals based on drivers’ existing activities. Sustainable Cities 

and Society, 59. 

3. Zeb, M. Z., Imran, K., Khattak, A., Janjua, A. K., Pal, A., Nadeem, M., … Khan, S. 

(2020). Optimal Placement of Electric Vehicle Charging Terminals in the Active 

Distribution Network. IEEE Access, 8, 68124–68134. 

4. Mainul Islam, M., Shareef, H., & Mohamed, A. (2018). Optimal location and sizing of 

fast charging terminals for electric vehicles by incorporating traffic and power 

networks. IET Intelligent Transport Systems, 12(8), 947–957. 

5. Ma, J., & Zhang, L. (2018). A deploying method for predicting the size and optimizing 

the location of an electric vehicle charging terminals. Information (Switzerland), 9(7). 

6. Akbari, M., Brenna, M., & Longo, M. (2018). Optimal locating of electric vehicle 

charging terminals by application of Genetic Algorithm. Sustainability 

(Switzerland), 10(4). 

7. Topić, J., Soldo, J., Maletić, F., Škugor, B. & Deur, J. (2020) Virtual Simulation of 

Electric Bus Fleets for City Bus Transport Electrification Planning. Energies, 13 (13), 

3410, 23 doi:10.3390/en13133410. 
8. Dabčević, Z.; Škugor, B.; Topić, J.; Deur, J. (2022) Synthesis of Driving Cycles Based on 

Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology. Energies 

2022, 15, 4108. https://doi.org/10.3390/ en15114108 

9. Sundström, O., & Binding, C. (2012). Flexible charging optimization for electric vehicles 

considering distribution grid constraints. IEEE Transactions on Smart Grid, 3(1), 26–37. 

10. Sundström, O., & Binding, C. (2010). Optimization Methods to Plan the Charging of 

Electric Vehicle Fleets. Proceedings of the International Conference on Control 

Communication and Power Engineering, 1(2), 28–29.  

11. Vazirani, V. V. (2001). Approximation algorithms. Springer. ISBN: 978-3-540-65367-7 

 


