
Microservices Scheduling for 
ALICE O2 Facility

August 2016

Author:
Kevin Napoli

Supervisor(s):
Giulio Eulisse

 

CERN openlab Summer Student Report 2016



CERN openlab Summer Student Report 2016

Project Specification

This project seeks to research ways to deploy DDS (Dynamic Deployment System) jobs across 

cluster nodes using Apache Mesos. It is subdivided in three subtasks

1. DDS Mesos Plugin – This task involves writing a plugin for DDS such that it can deploy 

agents on cluster node by using Apache Mesos. The DDS plugin interfaces with Mesos 

using the Mesos Framework API.

2. Trying out Mantl – This task involves deploying Mantl.io on a test cluster, try Mantl.io 

and analyse the complexities of deploying DDS agents using the Mantl GUI interface. A 

summary of the advantages and disadvantages of deploying DDS agents through Mantl is

to be reported.

3. Automatic Network Topology Detection – This task involves researching ways to 

automatically infer the underlying network switch topology in Layer 2. This means that 

protocols for network discovery such as SNMP cannot be used. After this step, one idea is

to use the discovered topology in Mesos. 

As a result, one will be able to submit DDS jobs on a Mesos controlled cluster through the usual 

dds-submit interface/procedure which is currently in use. 



CERN openlab Summer Student Report 2016

Abstract

As academic and industrial computational needs rise, organisations employ the use of computer

clusters in order to keep up with these computational needs and CERN is no exception. Several

distributed software frameworks exist, each of which solves a particular problem. However, these

frameworks assume total control of cluster resources making it difficult to run them concurrently

on the same cluster. Additionally, it is apparent that there is no scheduling algorithm or policy that

satisfies  all  types  of  jobs.  Apache  Mesos,  a  meta-scheduler  for  distributed  systems,  tries  to

mitigate this problem without resorting to statically partitioning a cluster. In this work we have

explored ways of integrating the Dynamic Deployment System (DDS) at CERN with Mesos. As a

result, DDS jobs can be run on a Mesos governed cluster.



CERN openlab Summer Student Report 2016

Table of Contents

1 Introduction...................................................................................................................5

2 Dynamic Deployment System.......................................................................................6

2.1 RMS Plugins and DDS Agents...................................................................................6

2.2 Topology Example......................................................................................................7

2.3 Usage.........................................................................................................................8

3 Apache Mesos...............................................................................................................8

3.1 Framework Guidelines.............................................................................................10

3.2 Scalability.................................................................................................................10

4 DDS-Mesos Plugin......................................................................................................11

4.1 Design and Implementation.............................................................................................11

4.1.1 DDS Plugin.......................................................................................................11

4.1.2 Mesos Framework............................................................................................13

4.2 Usage & Demo................................................................................................................15

5 Mantl...........................................................................................................................16

5.1 Evaluation................................................................................................................17

5.2 Integrating other Services.........................................................................................19

5.3 Experience...............................................................................................................20

6 Network Discovery......................................................................................................20

6.1 Switches and Ethernet..............................................................................................21

6.2 Switch Topology Detection.......................................................................................21

6.3 Results.....................................................................................................................25

6.4 Limitations................................................................................................................26

6.5 Alternatives...............................................................................................................27

7 Conclusion and Future Work.......................................................................................27

8 References..................................................................................................................28



CERN openlab Summer Student Report 2016

1 Introduction

In computer science, scheduling is a well known optimisation problem where a number 

of computer jobs residing in a queue are assigned to specific resources owned by a 

system. This task is carried out by a scheduler. Schedulers are used in a wide range of 

applications, from embedded devices [1] to distributed computers [2]. One example is a 

process scheduler where the aim is to maximise resource efficiency and minimise the 

time that each process takes to execute [3]. The properties of a scheduler vary depending 

on the application of the scheduler and on the scheduling policy. Moreover, scheduling 

pertains to the class of NP-Complete problems, and as such, only approximate solutions 

can be produced.

ALICE (A Large Ion Collider Experiment), one of a number of experiments at CERN’s 

Large Hadron Collider, features a detector designed to investigate nucleus-nucleus 

interactions at high energy densities. The objective of the experiment is to recreate and 

study the quark gluon plasma, believed to have been the state of the Universe up to a few 

milliseconds after the Big Bang [4].

In order to allow for maintenance, the LHC is periodically shutdown and the timeline of 

the ALICE experiment is subdivided into runs and long-shutdowns. For Run 2 of the 

experiment, which is ongoing, dedicated clusters are responsible for the online tasks of 

data acquisition and storage while offline analysis is delegated to the Worldwide LHC 

Computing Grid (WLCG). In order to meet the elevated data requirements of Runs 3 and 

4 following Long Shutdown 2, ALICE computing will upgrade to O2 [5, 6], a combined 

online and offline high-throughput system that incorporates heterogeneous computing 

platforms. With the O2 software framework, a common ALICE computing facility will 

share data acquisition and processing responsibilities such as detector read-out, event 

building, data recording, detector calibration, detector reconstruction and physics 

simulation and analysis.

O2 will use the ALFA software framework [7] to provide data-flow concurrency with 

message queues to a cluster job. The O2 computing infrastructure will also be required to 

dynamically partition the cluster among a broad variety of online and offline jobs with a 

high degree of flexibility and resilience. Dynamic Deployment System (DDS) [8] is 

ALFA’s own component for dynamically distributing processes across a cluster. DDS is 

able to deploy processes on a cluster using any resource management system (RMS) in a 

predefined topology dictated manually by the user through an XML file. Tasks within a 

topology can have properties and this allows users to, for example, create dependences 

between tasks [9].



CERN openlab Summer Student Report 2016

2 Dynamic Deployment System

The Dynamic Deployment System (DDS) is a software framework developed by GSI

Helmholtz Centre for Heavy Ion Research (GSI) that simplifies the process of deploying

tasks on a cluster [10].  It  provides a common API to communicate with an arbitrary

Resource  Management  Systems  (RMS).  Tasks  are  defined  in  an  XML  file  most

commonly referred to as the topology file. The topology file contains information about

each task. Users can define properties, task dependencies, hosts where the tasks can run

and more.

The process of running DDS is simple and consists mainly of three steps. 

1. Users start a DDS server (also known as Commander) on their machine

2. Deploy DDS agents on the required worker nodes through the use of an RMS

3. Enable and run a DDS topology

The outlined steps show how simple it is to run jobs on a cluster using DDS although

there  are  some  limitations.  The  users’  machine  must  be  able  to  accept  incoming

connections to reach the DDS server that they spawned in the first place. The DDS server

provides task coordination for the worker nodes and also allows the user to monitor the

status of jobs and running nodes. Each DDS agent connects to the server in order to

exchange  information.  This  also  means  that  worker  nodes  must  allow  outgoing

connections.

2.1 RMS Plugins and DDS Agents

In order for DDS to be able to communicate with an RMS, a suitable DDS plugin must be

written  for  it.  Therefore,  DDS  supports  a  plugin  architecture  that,  in  theory,  allows

communication with a large number of RMSes.

DDS uses an RMS plugin specifically for one task; to deploy the DDS worker package

on a number of nodes on the cluster. The worker package is named DDSWorker.sh. In

short, it is a large package containing all the dependencies and consists of shared objects

that will be loaded at runtime and scripts required to be able to run the DDS agent.

Currently DDS supports three plugins as tabulated below:



CERN openlab Summer Student Report 2016

Name Description

Localhost This plugin is used to deploy agents on the same machine as

the one used to start DDS

SSH This  plugin  is  used  to  deploy  agents  on  remote

machines/nodes than the one used to start DDS. It assumes a

readily configured  public/private  key between this  machine

and remote nodes. Using SSH, it will then deploy the DDS

worker package and start execution of the package on each

node.

Slurm This  plugin  is  used  to  deploy  agents  on  a  cluster  that  is

running Slurm [11]. It is designed to work on small and large

Linux clusters and has a set of tools to be able to monitor

work.  Slurm  is  also  pluggable  and  different  scheduling

algorithms can be implemented to expand its functionality.

Once the  worker  package is  deployed and run  on each node,  the  RMS is  no  longer

needed. Each DDS agent connects to the server that is started on the user’s machine and

control to each node is thus acquired. Tasks would now be able to be deployed freely

without requiring further tools/software.

2.2 Topology Example

A DDS topology defines the tasks to be run on the agents that were setup previously. To

demonstrate how a simple topology file is structured, an example involving sleep tasks is

shown below (sleepTopology.xml):

<topology id="sleepTopology">

   <var id="appNameVar" value="/bin/sleep" />

   <decltask id="task1">
      <exe reachable="true">${appNameVar} 120</exe>
   </decltask>

   <decltask id="task2">
      <exe reachable="true">${appNameVar} 121</exe>
   </decltask>

   <!-- Definition of the topology itself -->
   <main id="main">
      <task>task1</task>
      <task>task2</task>



CERN openlab Summer Student Report 2016

   </main>

</topology>

This file defines two tasks: task1 and task2. The task has an exe node with a reachable

attribute. The command to be run is inside this node and the reachable attributes tells

DDS that the executable is already located on the worker node.  task1 will run ‘sleep

120’ while task2 will run ‘sleep 121’. The appNameVar variable defines the path of

the executable to run. Properties can also be defined under each task and can be used for

communication between worker nodes.

2.3 Usage

DDS supplies various commands to be able to execute the various stages mentioned above. In

order to deploy the sleep topology defined above, the following steps are required.

1. Start DDS server – dds-server start

2. Deploy the agents using an arbitrary rms (in this case localhost) – dds-submit –rms
localhost -n 2

3. [Optional] Verify that the agents are actually online using – dds-info -l

4. Set the topology – dds-topology –set sleepTopology.xml

5. Activate the topology – dds-toplogy –activate

One should be able to verify that the sleeping tasks are indeed being executed on each node.

3 Apache Mesos

According to Guatam et al., it is apparent that there is no scheduling algorithm or policy

that satisfies all types of jobs [12]. In fact, many computational problems in the industry

nowadays require special software applications. For instance, Hadoop [13] (derived by

MapReduce [14]) is an application that aids with the computation of Big Data problems

while Google Pregel [15] is an application that is especially good at processing graph

data. While there are ways to perform graph data processing on Hadoop, the performance

is  low compared to  computing  it  with Pregel.  Additionally,  these applications  cannot

easily coexist and may take control of the resources of the whole cluster. 

One solution to allow two or more applications to run together is to statically partition the

cluster thereby isolating one application from another. However, this option is not very

optimal. At any point in time, an application might require the use of more resources or it

might not even use all the resources allocated to it with static partitioning. 



CERN openlab Summer Student Report 2016

To solve this problem, Hindman et al. developed Apache Mesos [16], a granular and thin

resource sharing layer  providing a common interface to frameworks (applications are

called frameworks in the terminology of Meses) for accessing cluster resources. Instead

of  implementing  a  complex  centralised  scheduler  that  caters  for  all  framework

requirements,  Mesos  takes  a  different  approach.  It  implements  a  resource  offer

mechanism, an abstraction which delegates scheduling control to the frameworks. This

mechanism requires two components for each framework communicating with Mesos; A

framework  scheduler  and  an  executor.  The  framework  scheduler  is  responsible  for

negotiating resources offered by Mesos and allocating these resources to jobs that need to

run. It can allocate resources using any scheduling algorithm and policy that it requires.

The framework scheduler, as well as the executor, can be developed in Java, C++ or other

languages  by using  the  respective  API that  Mesos offers.  The executor  is  a  separate

component responsible for running the job selected by the framework scheduler. 

Therefore,  Mesos  enables  a  two-level  scheduling  scheme  and  allows  multiple

frameworks to run on the same cluster. At one level, Mesos uses a pluggable resource

allocation  module  to  decide  what  resources  to  offer  to  which  framework.  Two

organisational policies are implemented, one that is fair and another that is priority based.

At the second level, the framework scheduler decides how to allocate the jobs it needs to

schedule on its executor. 

Mesos is fair; it guarantees a minimum resource allocation to every framework that is

running on the cluster. It also penalises frameworks that are not elastic and that latch onto

resources beyond their minimum allocation for a long time by revoking their tasks in

order to obtain resources back. This can happen if a new framework starts running while

other frameworks have already acquired all the cluster resources. The new framework

would not be able to reach its guaranteed allocation if other frameworks do not scale

down. Before revoking any tasks, Mesos gives a grace period to the framework so that it

can clean up prior to forcefully killing its tasks.

In some cases, Mesos could offer resources that are incompatible with a framework. This

results in a framework rejecting the resources every time they are offered to it. It could

also reduce the efficiency of the cluster and waste network bandwidth; these resources are

not being used while Mesos is offering resources to the wrong frameworks. To tackle this

issue, Mesos features filters. Frameworks can specify which resources they can accept at

registration time. Thus, Mesos will never offer resources to a framework that cannot ever

utilise them. This increases the scalability of resource allocations. 

The Mesos master is fault-tolerant as it has been designed to be soft state. This means that

if the master fails, its internal state can be regenerated by the next elected master node.

The  information  to  reconstruct  this  state  is  held  by  the  slaves  and  the  framework

schedulers. 



CERN openlab Summer Student Report 2016

3.1 Framework Guidelines

Hindman et al.  give general suggestions which they refer to as framework incentives.

These incentives are aimed to promote job response times. A framework is incentivised to

use short tasks, scale elastically and to reject unknown resources immediately. Having

short tasks minimises the impact of work lost due to failures or revocations. Using an

elastic framework, as opposed to a rigid one, maximises resource utilisation allowing jobs

to start  and finish earlier.  Rigid frameworks generally do not start  their  jobs until  all

required resources are acquired and do not release resources until all jobs finish. Finally,

frameworks should never accept resources that they cannot utilise; this would waste them

as other frameworks that can use them would not be able to. 

With this in mind, the authors implement a Hadoop framework for Mesos using Delay

Scheduling [17]. Delay Scheduling is a scheduling algorithm aimed at increasing fairness

and data locality – two properties that Gautam et al. term to be important in MapReduce.

To attain this, Zaharia et al. show that to achieve fairness, waiting for tasks to finish is

better than killing running tasks in order for new tasks to run instantly. They find that

waiting does not really affect job response time assuming that jobs are longer than the

average task length and that the cluster is being utilised by many users. Particularly, job

response time will not be notably affected if the cluster is running many jobs, small jobs

or long jobs. 

3.2 Scalability

Results have shown that using Delay Scheduling in the Hadoop framework raised locality

above 90% as opposed to 50%. This was achieved as a result of Mesos’ resource offer

mechanism where in conjunction with the Hadoop framework, most of the tasks were run

on nodes that contained local data essential for the task.

Hindman  et  al.  also  evaluate  a  mix  of  Hadoop,  Spark  and  Torque  jobs  running

concurrently on a 96 node cluster. They run two instances of Hadoop, one consisting of

small  to  large  workloads  and  another  consisting  of  typical  Facebook  workloads,  an

iterative learning job on Spark and a ray tracing process on Torque. Each instance is first

evaluated in static partitioning assigning 24 (one fourth of the cluster) nodes per instance.

Running  the  four  instances  concurrently  on  Mesos  yielded  positive  results.  Mesos

enabled each instance of a framework to scale beyond 24 nodes when other frameworks

had low resource usage and it also managed to reallocate resources fast. All instances

except for Torque took less time to finish than when they were statically partitioned.

Hadoop with typical Facebook workloads acquired a speed-up of 2.1 while Torque ran

slightly slower with a speed-up of 0.96. 



CERN openlab Summer Student Report 2016

4 DDS-Mesos Plugin

The first part of this project consisted of developing a plugin for DDS with a suitable

Mesos framework. The problem is that DDS, as any other framework, takes exclusive

control of cluster resources. Running another framework on the same cluster as the one

running DDS creates conflict unless static partitioning is set up. The first part of this

project deals with allowing the DDS framework to run alongside other frameworks on the

same cluster and allowing other frameworks to scale up while DDS is inactive or using

few resources, thus maximising cluster utilisation. Apache Mesos is designed to solve

these types of issues and has thus been chosen as the ideal candidate. 

4.1 Design and Implementation

The solution has been subdivided into two loosely coupled solutions namely DDS plugin

and Mesos framework. In short, the DDS plugin interacts with the user through  dds-

submit and  communicates  with  a  REST  service  implemented  inside  the  Mesos

framework. The Mesos framework receives this REST submission, parses the data and

deploys  the agents  as requested.  The agents  can also be run in  Docker  containers to

guarantee isolation and worker package binary compatibility. A user who is running DDS

on a different Linux distribution than the Mesos cluster can use this feature to run the

worker packages without problems.

A high level architectural view is shown below:

Figure 1. DDS-Mesos High Level Architecture

4.1.1 DDS Plugin

Whenever the user performs the dds-submit command in the terminal, an appropriate

RMS plugin is chosen. A configuration file can also be included using the -c switch when

invoking  dds-submit and is mandatory for this plugin. In order to use Mesos as an



CERN openlab Summer Student Report 2016

RMS to deploy DDS agents, a Mesos plugin for DDS has been written. This plugin is an

executable written in C++11 that communicates with DDS through a form of interprocess

communicaton. DDS provides appropriate libraries that contain registration functions for

the plugin to register callbacks for appropriate DDS events. 

The  functions  that  the  DDS  library  provides  in  the  dds_intercom.h header  file,

specifically in the CRMSPluginProtocol class, are tabulated below:

Function Prototype Description

void
onSubmit(signalSubmit_t::slot_fu
nction_type _subscriber);

Subscribe  for  submit  notifications.  The

registered callback function is called when the

user invokes dds-submit. The parameter passed

to  the  callback  functions  (type  SSubmit)

includes  information  about  the  path  to  the

worker package, DDS submission identifier and

configuration file path/number of instances.

void
onMessage(signalMessage_t::slot_
function_type _subscriber);

Subscribe for message notifications.

void  sendMessage(EMsgSeverity
_severity,  const  std::string&
_msg);

Send message to the DDS commander (server).

Can be used to send log/debug information to

the commander.

void start(bool _block = true);
Send initial request to the commander and start

listening  for  notifications.  Under  normal

conditions, function blocks until stop is called.

void stop();
Stop waiting. Will make start return.

A configuration file is  required for the plugin to run. The format of each line of the

configuration file should be as follows: 

1. Mesos Master IP:Port

2. Number of agents to deploy

3. Docker image to use for the agents to run in

4. Folder inside the docker image where to copy the DDS Worker Package

5. Number of CPU Cores to utilise for each Agent

6. The size of memory to use for each agent (in Megabytes)

7. The IP:Port of the Rest service API



CERN openlab Summer Student Report 2016

The DDS plugin is detached from any Mesos code. Instead of communicating directly

with  Mesos,  it  calls  a  centralised  REST  service  implemented  in  the  DDS  Mesos

framework. Therefore, the plugin translates the information coming from the onSubmit

event and from the configuration file, generates a JSON object and through an HTTP

POST calls  a  REST method on the server  (endpoint  http://<ip:port>/dds-submit).  The

format of the JSON object generated is show below:

Listing – Json DDS Submission
{

DDSSubmissionId: <id>,
WorkerPackageName: <worker-package-file-name>,
WorkerPackageData: <worker-package-file-in-base64>,
Resources: {

NumAgents: <number-of-agents>,
CpusPerTask: <number-of-cpus-per-agent>,
MemorySizePerTask: <memory-size-per-agent>

},
Docker: {

ImageName: <docker-image-name>,
TemporaryDirectoryName: <working-directory-in-container>

}
}

On success, the server replies with HTTP 200 and the following JSON:

{
Id: <Rest-Id-Submission>

}

The DDS plugin will print this identifier in the logs and indicate a successful submission.

From this point onwards, the DDS plugin polls the /status endpoint every 500msec until

all  pending  agents  are  running.  As  soon  as  dds-submit returns,  all  agents  are

submitted. The DDS agents should appear on the Mesos UI. One can check whether the

agents are online by invoking dds-info -l. 

On error, an HTTP error code is returned together with a text response of the error. The

error can also be found in the relevant log. Note that currently, only the HTTP code 400

(Bad Request) is returned for any error that might occur.

4.1.2 Mesos Framework

The second part involves the implementation of a REST service and Mesos Framework.

A REST service has been exposed using the Microsoft  C++ Rest SDK (Casablanca).

Currently, this service has three endpoints:

Endpoint Type Description



CERN openlab Summer Student Report 2016

/dds-submit POST This  endpoint  is  used  to  submit  a  number  of  DDS

agents  on  the  cluster.  A JSON object  is  expected  as

input and its format is described in Listing – Json DDS

Submission

/dds-work-package?

id=<size_t>

GET This endpoint is used to download the worker package

submitted  using  the  identifier  returned  by  the  dds-

submit endpoint. 

/status?id=<id> GET Currently returns the number of submissions performed

on the server. If a submission identifier is provided, it

returns the number of agents that are still  waiting for

resource offers and thus still need to be deployed on the

cluster. The result is a JSON object of the form:

{
    NumSubmissions: <size_t>,
    PendingAgents: <size_t>
}

When a DDS client makes a submission through the /dds-submit endpoint, a list of

tasks corresponding to each DDS agent is created on the server. A Mesos task generally

defines a number of properties. These include which Mesos executor is to execute, the

command information, any files required and resource allocation. The Mesos framework

provides the following information to the Mesos master:

 ContainerInfo: In case a docker image is specified, this is the image inside

which the custom executor will run

 CommandInfo_URI: Worker package URL set as executable, non-cacheable

 CommandInfo:  A command that  creates  a  working directory and copies  the

worker package inside it

 The final command that starts to execute the working package inside the newly

created working directory

This list is then passed onto the Mesos framework’s FIFO queue.

As  cluster  resources  become  free,  the  Mesos  master  will  make  offers  to  the  Mesos

framework.  If  these  resources  are  adequate  for  the  DDS  agent  tasks,  the  Mesos

framework will accept them and submit the task information to the Master.  



CERN openlab Summer Student Report 2016

Consequently, the master delegates each task to the corresponding slave. The slave starts

the default Mesos executor (a custom executor was not required) which according to the

task information will perform the following:

 Load the required Docker image and start the container if necessary.

 Perform a GET request  to  download the  DDS worker  package by calling  the

/dds-worker-package REST endpoint

 Execute the command requested in the CommandInfo object specified before

4.2 Usage & Demo

Instructions on how to use the DDS plugin and the DDS Mesos/Rest service can be found

in the README.md file of the mesos-dds git repository [18]. When the DDS Mesos/Rest

service is successfully initialised, it should be listed in the Mesos UI. In this example, the

command:

dds-mesos-server  --master=10.162.61.10:5050  –
resthost=10.162.61.10:1234

was executed and as a result the following framework entry appears in the Mesos UI:

Figure 2. DDS Framework in the Mesos UI

On the client side,  the DDS Commander was initialised and a submission performed

using the DDS plugin for Mesos. The following commands were executed:

dds-server start -s && dds-submit -r mesos -c conf.txt

The configuration file contained the required information to submit two agents on the

cluster (see git  repository for more details).  As a result,  the following tasks are now

visible in the Mesos UI:



CERN openlab Summer Student Report 2016

Figure 3. DDS Agents running in the Mesos UI

Additionally, dds-info -l yields:

Figure 4. dds-info command showing running agents

5 Mantl

A  very  important  trend  in  service-based  distributed  systems  is  the  adoption  of

microservices,  a more granular, scalable and fault  tolerant approach to the monolithic

counterpart.  For all their advantages, microservice architectures introduce problems of

their own, such as more complex deployment, orchestration and management processes;

Mantl.io by CISCO is an open source end-to-end solution for deploying and managing a

microservices infrastructure. It consists of a curated set of software packages including

Apache Mesos and recently Kubernetes. Mantl provisions its infrastructure via Terraform

[22] and installs itself using Ansible [26]. A set of Ansible addons are also provided to

deploy additional Mesos frameworks.

It  would  therefore  be  interesting  to  see if  DDS can be  easily  included in the  Mantl

distribution for ease of deployment. We therefore decided to evaluate Mantl.



CERN openlab Summer Student Report 2016

5.1 Evaluation

The first approach taken was that of setting up Mantl on a local machine using Vagrant

[27]. However, this process was not successful. One issue was that the virtual machines

setup by Vagrant would not boot successfully during some parts of the process. This

procedure has then been discontinued and another approach was taken.

The other approach involved setting up Mantl on the OpenStack cloud running at CERN.

The  first  step  that  was  taken  involved  creating  the  OpenStack  instances  using  the

OpenStack  Terraform  provider.  The  sample  Terraform  script  terraform/openstack-

modules.sample.tf  was copied and changed according to the instructions given in the

documentation of Mantl.  This file configures the instance names to use, the number of

nodes to use for Mantl and more. Due to limited resources of the test account we used,

Kubernetes worker nodes were disabled in the aforementioned Terraform configuration.

At first  running the script  failed due to  the setup of the OpenStack cloud at  CERN.

Specifically,  Floating IPs and Neutron ports are disabled due to network performance

issues. Therefore, the following changes have been made in order to setup the required

Mantl instances correctly.

 mantl/roles/calico/tasks/openstack.yml –  Commented  out  the  role  with  the

name ‘unlock neutron ports to allow calico traffic’

 mantl/terraform/openstack/instance/main.tf –  Commented  out  the  following

lines:

◦ variable floating_ips { default = "" }

◦ variable network_uuid {}

◦ floating_ip  =  "${  element(split(",",
var.floating_ips), count.index) }"

◦ network  = {   uuid = "${var.network_uuid}" }

After  these  changes  are  made,  one  can  successfully  run  terraform plan and

terraform apply.  After  these  two  commands  are  run,  the  required  OpenStack

instances will be setup.

The second step involved configuring the newly created node instances using Ansible.

Mantl  provides  ready  made  scripts  for  this  as  well.  However,  simply  following  the

instructions in the documentation is not enough. The reason for this is that the CentOS

images at CERN in OpenStack come pre-set with a yum plugin called protectbase. This

plugin hides the Cisco repository which is setup by the Ansible scripts and therefore the

setup will fail. To solve this, protectbase has been disabled on all nodes. This was done



CERN openlab Summer Student Report 2016

manually by editing the /etc/yum/pluginconf.d/protectbase.conf and changing enabled

= 0 to enabled = 1. After this adjustment was made, the setup continued as follows:

 Run security setup script – security-setup

 Upgrade  packages  on  nodes  -  ansible-playbook
playbooks/upgrade-packages.yml

 Install Mantl and all dependencies - ansible-playbook sample.yml -e
@security.yml

Following this,  the  setup completed  successfully.  As a  result,  Mantl  and some of  its

default components were installed on the OpenStack nodes that were setup previously

after applying Terraform. The Mantl UI web page opened successfully as it can be seen in

Figure 5. Figure 5 shows that the applications are running normally on the cluster.

Figure 5. Mantl Main Page

If one wants to check the health of an application/service, one can click on the Health

link at the top of the page. For example, clicking on Health and then on consul gives in-

depth detail about it. Figure 6 shows the result of this:



CERN openlab Summer Student Report 2016

Figure 6. consul health details

5.2 Integrating other Services

Once Mantl was up and running, the next step taken was that of adding other services to

the  cloud.  In  order  to  do  this,  we  used  the  ready-made  Ansible  scripts  by  Mantl.

Specifically,  we  tried  installing  Kafka  and  Elastic  search  using  the  commands

ansible-playbook  addons/kafka.yml  -e  @security.yml and

ansible-playbook addons/elk.yml -e @security.yml respectively. 

Ansible’s script reported the elastic search to have installed successfully. However, elastic

search did not show up in the Mantl UI. We suspect the reason to be related to the lack of

resources in the test environment as the resources are lower than those suggested in the

documentation  for  installing  elastic  search.  Additionally,  Ansible’s  script  failed  when

trying to install Kafka giving the following error: No healthy Kafka scheduler found in

300 seconds.



CERN openlab Summer Student Report 2016

5.3 Experience

Mantl is a good tool; it allows one to easily monitor the health and deploy applications

entirely through the use of the Mantl dashboard. However, when deployed to the CERN

OpenStack cloud a lot of problems were encountered. The main reason for this is due to

the different  OpenStack configuration employed at  CERN. The time spent  debugging

errors  by far  exceeded  the  time  to  manually deploy cluster  instances  with  the  same

services installed. The most time consuming problem was understanding why nodes were

not able to install kubernetes binaries. An issue was raised on github to try and determine

the reason[23]. The lack of Neutron ports in the CERN OpenStack also contributes in

making Mantl a less useful solution in the CERN environment.

Consequently, due to the time lost debugging these issues, there was not enough time left

to  implement  the  scripts  necessary  to  automate  the  deployment  of  the  DDS-Mesos

solution on cluster nodes. 

6 Network Discovery

With the advent of dynamic resource allocation and microservices in computer clusters,

jobs of different types can run on the same cluster. It is safe to assume that some of these

jobs might have strict real-time constraints in order to produce useful results. A cluster

that partitions resources dynamically might allocate resources that are not adapt for real-

time applications. For instance, Mesos could offer resources to a real-time application

that might increase the network latencies incurred by the said application.

A real-time application running on Mesos could counteract this if it knows the network

topology a priori and then wait for resources pertaining to a select number of nodes to be

offered.  However,  this  is  not  an  ideal  solution  as  in  practice,  nodes  can  fail.  If  an

application expects a specific resource from a specific node, then this would slow down

computation even further.

One solution to this problem is for Mesos to be able to determine the network topology

dynamically.  Given  the  knowledge  of  the  network  topology,  Mesos  can  make  better

scheduling decisions for real-time applications as the nodes with the least number of hops

could then be allocated/offered to these applications.

While it is relatively easy to determine the network topology of Layer 3 devices such as

routers,  it  is  harder  to  determine  the  network  topology  of  Layer  2  devices  such  as

switches. Layer 3 devices generally implement protocols like SNMP (Simple Network

Management  Protocol)  that  work  using  IP to  help  determine  the  network  structure.

Switches, on the other hand, work at a lower level and do not decode IP packets.

This part of the project explores techniques used to determine the network topology of

Layer 2 devices, specifically Ethernet switches. Knowing this information could increase



CERN openlab Summer Student Report 2016

the  performance  of  dynamically  partitioned  cluster  computers  as  better  scheduling

decisions could be performed.

6.1 Switches and Ethernet

Ethernet switches communicate using Ethernet frames. The most common Ethernet frame

format, Ethernet Type II is illustrated below:

Figure 7. Ethernet Type II Frame [19]

The MAC header has all the required information such that a packet can travel to its

destination. Ethernet network cards on node devices are associated with a unique MAC

address. A MAC address is 6 bytes long. The MAC header thus consists of a destination

MAC address so that a packet can arrive to its destination, a source MAC address so that

the recepient knows the origin of this packet and EtherType field. The EtherType fields

identifies the protocol that the payload is encoded with. This field helps the kernel to use

the right decoding algorithms for the payload. An example value for the EtherType field

is 0x0800 which identifies the IPv4 protocol. Therefore, the kernel would know that it

expects the packet’s payload to start with an IP header.

During operation,  switches  ‘learn’ on which port  a  MAC address  resides  by using  a

tabular data structure that maps a MAC address to a port (a physical ethernet port located

on the switch). This data structure is filled and manipulated whenever a packet is received

on the switch and forwarded to another location. If the switch has no knowledge of where

it should forward an Ethernet packet because it finds no corresponding entry in the map,

then it will forward it to all its ports except on the port where it received the packet.

Additionally,  if a switch knows that MAC address A is to be found on Port 1 and it

receives a packet originating from MAC address A on Port 2, then that means that the

device has been rewired to port 2 during runtime and the switch updates its forwarding

table accordingly.

6.2 Switch Topology Detection

The behaviour of switches can be exploited to acquire information about the structure of

a network. Algorithms to get the network topology have already been developed[20] but

Nowicki & Malinowski[21] develop an improved method in terms of practicality.  An

implementation of this has been developed and published on Github [24].



CERN openlab Summer Student Report 2016

The algorithm is divided into three stages and consists of a node (device/pc) running as a

Master and the rest of the nodes running as slaves (daemons).

1. Discovery of all nodes in network

2. Discovery  of  all  bottom layer  switches  –  the  switches  that  contain  nodes  as

children

3. Discovery of the rest of the switches using relational analysis

The first step is straight forward; the master sends a message on the broadcast MAC

address (FF:FF:FF:FF:FF:FF) and all the nodes reply back. A list of slave nodes can then

be generated by using the source MAC address in the MAC header.

The second step can be determined by testing whether two nodes are on the same switch

or not and doing this for all the nodes. A connectivity matrix is thus formed and this can

be used to group nodes to their respective parent switch. An example of this is shown

below where two fictitious MAC addresses UA1 and UA2 are used:

Assume the following network topology:

Figure 8. Example Network Topology

Determine whether N1 and N2 reside on the same switch:



CERN openlab Summer Student Report 2016

Step Description Switch 1 Map Switch 2 Map

1 Let N1 send the empty from UA1 to

BCAST

N1: UA1 --> BCAST

MAC UA1, Port 1 MAC UA1, Port 0

2 Let N1 send: N1: UA2 --> UA1

Switch  1  knows  that  UA1  resides

on Port 1 and registers UA2 to be

on Port 1 as well. Thus, the switch

will  not  forward  the  message

anywhere.

MAC UA1, Port 1

MAC UA2, Port 1

MAC UA1, Port 0

3 Let N2 send the empty from UA1 to

BCAST

N2: UA1 --> BCAST

The switches will update their map

table  accordingly  with  regards  to

the location of UA1.

MAC UA1, Port 2

MAC UA2, Port 1

MAC UA1, Port 1

4 Let N2 send: N2: UA2 --> UA1

Switch  2  knows  that  UA1  resides

on Port 1 and registers UA2 to be

on Port 1 as well. Thus, the switch

will  not  forward  the  message

anywhere.

MAC UA1, Port 2

MAC UA2, Port 1

MAC UA1, Port 1

MAC UA2, Port 1

5 Let N1 send test message:

N1: MACN1 --> UA2

Switch  1  registers  the  new  entry.

Switch 1 will do nothing else since

the source and destination port are

the same.

MAC UA1, Port 2

MAC UA2, Port 1

MAC MACn1, Port 1

MAC UA1, Port 1

MAC UA2, Port 1

To determine whether  N1 and N2 reside on the  same switch,  one checks whether  N2

received the test message coming from N1. In this case, Switch 1 did not forward the

message and therefore it can be concluded that they reside on separate switches.



CERN openlab Summer Student Report 2016

Determine whether N2 and N3 reside on the same switch:

Step Description Switch 1 Map Switch 2 Map

1 Let  N2 send  the  empty  message

from UA1 to BCAST

N2: UA1 --> BCAST

MAC UA1, Port 2 MAC UA1, Port 1

2 Let N2 send: N2: UA2 --> UA1

Switch  2  knows  that  UA1  resides

on Port 1 and registers UA2 to be

on Port 1 as well. Thus, the switch

will  not  forward  the  message

anywhere.

MAC UA1, Port 2 MAC UA1, Port 1

MAC UA2, Port 1

3 Let  N3 send  the  empty  message

from UA1 to BCAST

N3: UA1 --> BCAST

Switch  2  updates  the  port  change

for that source Mac address.

MAC UA1, Port 2 MAC UA1, Port 2

4 Let N3 send: N3: UA2 --> UA1

Switch  2  knows  that  UA1  resides

on Port 2 and registers UA2 to be

on Port 2 as well. Thus, the switch

will  not  forward  the  message

anywhere.

MAC UA1, Port 2 MAC UA1, Port 2

MAC UA2, Port 2

5 Let N2 send test message:

N2: MACN2 --> UA2

Switch  2  registers  the  new  entry.

Switch 2 will forward the message

to  Port  2  since  the  source  and

destination ports are different.

MAC UA1, Port 2 MAC UA1, Port 2

MAC UA2, Port 2

MAC MACn2, Port 1

To determine whether  N2 and N3 reside on the  same switch,  one checks whether  N3

received the test message coming from N2. In this case, Switch 2 forwarded the message



CERN openlab Summer Student Report 2016

on Port 2 where N3 resides, and therefore it can be concluded that they reside on the same

switch.

In the third and final step of this algorithm, similar techniques exploiting the behaviour of

switches are used to determine the network topology. The difference being that the final

step  works  with  topologies  large  enough  to  have  three  bottom layer  switches.  This

method works by listing all the possible combinations in groups of 3 of bottom layer

switches and determining which bottom layer switch has a different parent switch than

the rest. If one such switch exists, then it can be concluded that this switch is at a level

higher in the network graph than the other two and a relationship of the form S1 < {S2,

S3} (S1 is at a higher level than S2 and S3) can be stated. When all the facts from each

combination are collected, they are combined together and using logical inference the

network topology can be approximately defined.  

6.3 Results

This algorithm has been tested on two different topologies. One topology was constructed

by using four Raspberry Pi while another one was constructed using four nodes on a test

cluster here at CERN. The following figures depict the topologies involved.

Figure 10. Raspberry Pi Network Topology

The topologies depicted in Figures 10 and 11 have been correctly determined. However,

these  network  topologies  are  too  small  when  compared  to  actual  production

environments.



CERN openlab Summer Student Report 2016

Figure 11. Alienvtest Test Cluster

Testing  larger  and  complex  network  topologies  is  not  always  possible  and  it  is

impractical. Therefore, an Ethernet network simulation layer has been implemented into

the  application.  Test  topologies  were  declared  in  an  XML file  and  the  results  were

promising.  In  some  cases,  the  algorithm  does  not  detect  the  topology  correctly

specifically when a switch has only one node as a child. This problem has been described

in the limitations section.

6.4 Limitations

The algorithm is prone to packet loss and this can decrease the accuracy of the derived

network topology. While some parts of the implementation can be made packet loss proof

using acknowledgment packets similar to TCP/IP, there are other parts where packet loss

cannot be avoided. These involve test messages where the receipt of messages determines

connectivity between two nodes as seen in the previous example. One solution to this

problem is to repeatedly send the test message n times, such that the probability of packet

loss becomes very low.

Another limitation is that switches having only one child switch cannot be detected by

this algorithm. This is due to insufficient data generated in Step 3 of this algorithm. A

minimum of  two child  switches  is  required  in  order  for  test  messages  to  be  able  to

determine the presence of a switch.



CERN openlab Summer Student Report 2016

Currently, the master node only coordinates the slave daemons. A slave daemon and a

master daemon cannot be run on the same node. This means that the node on which the

master node is situated cannot be detected and will not be visible in the result generated.

This issue can be solved by making the master code act as a slave when it is involved in

connectivity  queries.  The temporary solution  for  the  time being,  is  to  run the  whole

algorithm twice with differing master nodes and merge both graphs.

It is worth noting that root access is needed on each node. The reason for this is that the

master and slave daemons need access to raw sockets running in promiscuous mode. The

Linux kernel allows only root users the access to this functionality.

6.5 Alternatives

An alternative  algorithm for  network  topology  detection  has  also  been  studied.  The

algorithm, originally proposed to be used as an MPI tool by Lawrence and Yuan[25], is

based on ping times between nodes. A time matrix is first generated, then it is converted

to a hop count matrix using data clustering techniques and finally from the hop count

matrix,  the  network  graph  can  be  accurately  derived.  This  algorithm  has  been

implemented and tested and is available on Github [24]. 

This algorithm has been found not to perform well in practice. While a statistical method

is employed to reduce noise in ping time measurements and give a 95% confidence on

the accuracy of  the measurement,  the flaw in this  algorithm is  due to  heterogeneous

hardware. This algorithm is not effective on clusters where nodes are not identical in

terms of hardware. The reason is that this algorithm derives a hop count matrix based on

the  time  a  packet  takes  to  do  a  round  trip.  It  performs  data  clustering  in  order  to

determine the time of one hop. However, given different nodes where one is slower than

the other, the ping times vary greatly and the time of one hop can no longer be accurately

determined. Due to this, the network graph generated is highly inaccurate.

7 Conclusion and Future Work

As described previously,  the project has been divided into three components,  namely,

Mesos Framework & DDS Plugin, Mantl evaluation and Network Topology detection.

The Mesos Framework/DDS Plugin was successfully implemented and worked correctly

on a 40-node cluster. The Mantl evaluation took a lot of debugging effort, but a working

Mantl environment has been installed. Although, other applications such as elastic search

did not work and there was no more time to implement a solution to deploy the DDS

environment and plugin using Mantl. Finally, the network topology detection algorithm

gave accurate results for a number of random topologies.

As for  future work,  the Mesos-DDS work needs  to  be evaluated  for  scalability.  One

metric which is of interest is response time and scalability, specifically, how long it takes

to get all the agents running and what happens to the response time as the number of



CERN openlab Summer Student Report 2016

agents requested increases. For Mantl,  an Ansible role to deploy DDS and the Mesos

DDS plugin needs to be implemented. Additionally, further investigations to uncover the

reason why deploying other service instances under Mantl failed. Finally, for the network

topology detection, a Mesos allocator could be written implementing this algorithm. This

would  allow  Mesos  and  potentially  the  frameworks  connected  to  it  to  make  better

decisions with regards to applications requiring low latencies between the cluster nodes.

8 References

[1] Freertos. http://www.freertos.org, 2016. 

[2] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph,

Randy  H.  Katz,  Scott  Shenker,  and  Ion  Stoica.  Mesos:  A platform  for  fine-grained

resource sharing in the data center. In Proceedings of the 8th USENIX Symposium on

Networked Systems Design and Implementation, NSDI 2011, Boston, MA, USA, March

30 - April 1, 2011, 2011. 

[3]  Paul  Krzyzanowski.  Process  scheduling.

https://www.cs.rutgers.edu/pxk/416/notes/07-scheduling.html, 2015. 

[4] The ALICE Collaboration. http://alice-collaboration.web.cern.ch, 2016. 

[5]  The  ALICE Collaboration.  O2:  A novel  combined  online  and  offline  computing

system for  the ALICE experiment  after  2018.  Journal  of  Physics:  Conference  Series,

513(1):012037, 2014.

[6]  The ALICE Collaboration.  Technical  design report  for the upgrade of the online-

offline computing system. CERN, 2015 

[7] M. Al-Turany1, P. Buncic, P. Hristov, T. Kollegger, V. Lindenstruth, and P. V. Vyvre. ALFA: A

new framework for ALICE and FAIR experiments. Technical report, GSI Helmholtz Centre for

Heavy Ion Research, 2013. 

[8] GSI Helmholtz Centre for Heavy Ion Research. The DDS User Manual (v0.10), 2014. 

[9]  A.  Rusinov.  Graphical  Editor  of  the  DDS  Topology  Configuration.  DDS  -  Dynamic

Deployment System. Sep 2015. 

[10] DDS – http://dds.gsi.de/, 2016

[11]  Simple  Linux  Utility  for  Resource  Management  (Slurm)  –

http://slurm.schedmd.com/overview.html, 2016

[12] Jyoti V Gautam, Harshadkumar B Prajapati, Vipul K Dabhi, and Sanjay Chaudhary. A survey

on job scheduling algorithms in big data processing. In Electrical, Computer and Communication

Technologies (ICECCT), 2015 IEEE International Conference on, pages 1–11. IEEE, 2015. 



CERN openlab Summer Student Report 2016

[13] Apache Hadoop – http://hadoop.apache.org/, 2016

[14]  J.  Dean  and  S.  Ghemawat,  “Mapreduce:  simplified  data  processing  on  large  clusters,”

Commun. ACM, vol. 51, no. 1, pp. 107– 113, 2008. 

[15]  G.  Malewicz,  M.  H.  Austern,  A.  J.  C.  Bik,  J.  C.  Dehnert,  I.  Horn,  N.  Leiser,  and  G.

Czajkowski,  “Pregel:  a  system for  largescale  graph processing,”  in  Proceedings of  the ACM

SIGMOD  International  Conference  on  Management  of  Data,  SIGMOD  2010,  Indianapolis,

Indiana, USA, June 6-10, 2010, pp. 135– 146, 2010. 

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker,

and  I.  Stoica,  “Mesos:  A platform for  fine-grained  resource  sharing  in  the  data  center,”  in

Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation,

NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011, 2011. 

[17] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker,

and Ion Stoica. Delay scheduling: A simple technique for achieving locality and fairness in cluster

scheduling. In Proceedings of the 5th European Conference on Computer Systems, EuroSys ’10,

pages 265–278, New York, NY, USA, 2010. ACM. 

[18] Mesos-DDS – https://github.com/alisw/mesos-dds, 2016

[19]  Ethernet  Frame  Image  –

https://commons.wikimedia.org/wiki/File:Ethernet_Type_II_Frame_format.svg, 2016

[20]  R.  Black,  A.  Donnelly,  and  C.  Fournet,  “Ethernet  topology discovery without  network

assistance,” in Proceedings of IEEE International Conference on Network Protocols ICNP 2004,

Oct. 2004, pp. 328–339. DOI: 10.1109/ICNP.2004.1348122.

[21]  Nowicki,  Krzysztof,  and  Aleksander  Malinowski.  "Topology  discovery  of  hierarchical

Ethernet LANs without SNMP support." Industrial Electronics Society, IECON 2015-41st Annual

Conference of the IEEE. IEEE, 2015.

[22] Terraform – https://www.terraform.io/, 2016

[23]  Installation  Issue  -  Kubernetes  Version  1.3  not  available  in  yum  –

https://github.com/CiscoCloud/mantl/issues/1792, 2016

[24] Ethernet & Ping Discovery – https://github.com/kvnnap/ethernet-frames, 2016

[25] Lawrence, Joshua, and Xin Yuan. "An mpi tool for automatically discovering the switch

level topologies of ethernet clusters." Parallel and Distributed Processing, 2008. IPDPS 2008.

IEEE International Symposium on. IEEE, 2008.

[26] Ansible – https://www.ansible.com/, 2016

[27] Vagrant – https://www.vagrantup.com/, 2016


	Microservices Scheduling for ALICE O2 Facility
	August 2016
	Author:
	Kevin Napoli
	Supervisor(s):
	Giulio Eulisse
	
	CERN openlab Summer Student Report 2016

	1 Introduction
	2 Dynamic Deployment System
	2.1 RMS Plugins and DDS Agents
	2.2 Topology Example
	2.3 Usage
	3 Apache Mesos
	3.1 Framework Guidelines
	3.2 Scalability
	4 DDS-Mesos Plugin
	4.1 Design and Implementation
	4.1.1 DDS Plugin
	4.1.2 Mesos Framework

	4.2 Usage & Demo

	5 Mantl
	5.1 Evaluation
	5.2 Integrating other Services
	5.3 Experience
	6 Network Discovery
	6.1 Switches and Ethernet
	6.2 Switch Topology Detection
	6.3 Results
	6.4 Limitations
	6.5 Alternatives
	7 Conclusion and Future Work
	8 References

