
Mark Jordan-Kamholz and Dr.Boulanger. Bringing Csound to a Modern Production Environment

 76

I
C

S
C

 2
0

1
5

BRINGING CSOUND TO A MODERN PRODUCTION

ENVIRONMENT WITH CSOUND FOR LIVE

Mark Jordan-Kamholz
mjordankamholz AT berklee.edu

Dr. Richard Boulanger
rboulanger AT berklee.edu

Csound is a powerful and versatile synthesis and signal processing system and yet, it

has been far from convenient to use the program in tandem with a modern Digital Audio

Workstation (DAW) setup. While it is possible to route MIDI to Csound, and audio

from Csound, there has never been a solution that fully integrated Csound into a DAW.

Csound for Live attempts to solve this problem by using csound~, Max and Ableton

Live. Over the course of this paper, we will discuss how users can use Csound for Live

to create Max for Live Devices for their Csound instruments that allow for quick editing

via a GUI; tempo-synced and transport-synced operations and automation; the ability to

control and receive information from Live via Ableton’s API; and how to save and

recall presets. In this paper, the reader will learn best practices for designing devices

that leverage both Max and Live, and in the presentation, they will see and hear

demonstrations of devices used in a full song, as well as how to integrate the powerful

features of Max and Live into a production workflow.

1 Using csound~ in Max and setting up Csound for Live

Rendering a unified Csound file with csound~ is the same as playing it with Csound.

Sending a start message to csound~ is equivalent to running Csound from the terminal,

or pressing play in CsoundQT. The main difference is that when making Csound for

Live devices, we’re mainly concerned with an orchestra that is controlled by knobs,

sliders, buttons, and automation, rather than with an orchestra that is driven by a score,

or internal modulation and event triggering. Thus, the .csd file must be set up to receive

data in several ways from Max, and there are several things to consider when setting up

the file.

First, make sure that your output flag is set to -odac. If you don’t do this, Csound will

write to an audio file in addition to playing through Max and Live, and depending on

how long you might be jamming, this could slow down your system and you could end

up with an audio file several gigabytes in size! Next, set an ftable, usually f0, to be

Mark Jordan-Kamholz and Dr.Boulanger. Bringing Csound to a Modern Production Environment

 77

I
C

S
C

 2
0

1
5

loaded in and at a very large number of seconds, this will keep Csound running for

hours without quitting.

Setup in Max involves doing 3 things. After instantiating csound~, you will have to load

a unified csd file, choose a sample rate, and then start Csound. See figure 1 for an

example of a patch that does these things.

 Figure 1 Loading a .csd file into csound~

Finally, it is advisable to use ksmps instead of krate. Given that the user can change the

sample rate at any time, having a krate that is proportional to the sample rate means that

krate signals are synced to the sample rate, and are more likely to work as intended.

2 Creating a UI
When designing an instrument or effect using csound~, it is often helpful to start

with the interface. The goal is to have a clear idea of the structure of the instrument at

the outset, and knowingwhat variables are needed as you implement the design. After

you have sketched out the basic functionality of your device, you are ready to design

your UI in Max. There are two parts to designing the UI. The first is to create UI objects

in Max and configure them to respond properly to user input. The second is to send all

of the parameters that the user can change from the UI to Csound as detailed in figure 2.

Figure 2 Sending data to Csound with channels

Mark Jordan-Kamholz and Dr.Boulanger. Bringing Csound to a Modern Production Environment

 78

I
C

S
C

 2
0

1
5

Designing the UI itself is a bit more complicated; but there are several tools that

will give you more options over the way your interface looks and functions. Using the

extensive set of live externals is a fine starting point, but their default capabilities are

limited. The most useful tool for designing a UI in Max is the inspector, which can be

opened by pressing cmd+i on a Mac, or ctrl+i on Windows. It allows you to change the

colors of most objects. In addition, you can name objects, set their fonts, and manipulate

the data they output and display. This is useful in several ways: it lets you create your

own distinct look; it aids in consistency across different objects (allowing, for example,

Live and non-Live Max objects to have the same color scheme); it allows you to change

the text displayed by an object; and it allows you to scale the response of the UI objects

to be logarithmic, linear, or exponential, which is very useful when designing controls

that affect a frequency parameter in some way. For example, when creating a knob to

control the cutoff-frequency of a lowpass filter, there is typically a desire to have very

fine control over the range between 100Hz - 1000Hz, and less control over the range of

10000Hz and above. By setting the exponent parameter to 3, it is possible to make this

range a third of the circumference of the knob, as opposed to less than a 20th.

Figure 3a A view of the inspector, and the parameters it

allows the programmer to edit

Mark Jordan-Kamholz and Dr.Boulanger. Bringing Csound to a Modern Production Environment

 79

I
C

S
C

 2
0

1
5

Figure 3b Two different live dials – one linear, one exponential

3 Automation

 Automation allows a user to control a performance in real-time in a simple,

repeatable way. Since automation allows greater precision and expressiveness in a

performance, it is a highly desirable feature that enhances the usability of any device.

Automating the parameters of Max for Live objects from within Ableton is the same as

automating any other plugin’s parameters. To allow a parameter to be automated, the

Parameter Visibility setting in the inspector must be set to Automated and Stored.
 If you look at the inspector for an object that is capable of editing a parameter,

you will most likely see that it has a long name and a short name. An object’s long

name will be shown as a parameter on that device’s list of parameters on a track or clip.

As you create a device, your controls will be named non-indicatively (with long names

like live.dial[1], live.dial[2], etc…), and so when you look at your devices’ parameters

in Live it will be unclear what parameter you are automating. It can be beneficial to set

the long name at the same time as the short name when creating objects, to avoid

forgetting to do so later. After you have set the long name of your UI objects, a user can

then select your parameters in track or clip views in Ableton, and draw or perform

automation for them as they would with any other plugin parameter.

4 The Live API

 The Live API, when used in Max for Live, allows a user to send data to, and

receive data from, Ableton Live. This is especially useful when making devices that

have features that should be tempo-synced. It is also possible to have parameters change

in response to certain sections of a song being reached, and to manipulate clips from

within a device. The entirety of the Live API is outside the scope of this paper, so we

will focus on a simple example that best allows Csound to exploit Ableton – making a

tempo-synced delay that receives time signature and tempo, and passes an amount of

time, in seconds, to Csound.

 When using the Live API, the live.path and live.observer Max objects will allow a

user to receive information from Live objects inside the Live API. By querying a

specific parameter (called a property in Max for Live) via the live.observer object (after

supplying it a path to the object we want to observe), we can receive its value, updated

in real time, from the left outlet of the live.observer object. We can supply a path to the

right inlet of the live.observer object via the live.path object. To get tempo information

for a device, we first have to query the live.set object for its tempo property. This is

shown in figure 4a.

Mark Jordan-Kamholz and Dr.Boulanger. Bringing Csound to a Modern Production Environment

 80

I
C

S
C

 2
0

1
5

Figure 6a Setting up live.observer to receive tempo and time signature information

 Using a live.tab Max object, we allow the user to choose a subdivision of the bar,

which is then processed into a numerator and a denominator. We convert the BPM from

the tempo property to the amount of seconds per division the user has specified in figure

4b.

Figure 4b Converting BPM to subdivision time in seconds

 By converting from a note division to a time in seconds, the delay opcode in

Csound will be able to read that value and delay our audio input by the amount we

want. After we have the tempo information, we still need to send Csound that data; and

so we pass the value in seconds to csound~ with a c delay $1 message.

 There are many more uses for the Live API than what has been covered here. The

Live Object Model and Max for Live Building Tools are great starting points and

references when designing Max for Live devices.

Mark Jordan-Kamholz and Dr.Boulanger. Bringing Csound to a Modern Production Environment

 81

I
C

S
C

 2
0

1
5

Figure 4c The whole delay patch

5 Presets

 Uninitialized variables can cause certain opcodes to respond unexpectedly and so,

when starting a Csound for Live device, it is important to make sure that parameters are

initialized. There are two ways to initialize a device. The more efficient way is to use

the init opcode in Csound, before channel declarations, to ensure that all of your

variables have a value before they receive any data from the UI. While this is efficient,

it means that any changes done to the UI in Max (that involve initial parameter settings)

must be changed in the Csound score too, and this required step is easily forgotten. A

simpler method is to use the outlet that is second to the right on csound~, which sends a

bang whenever csound~ finishes compiling a .csd file. By using this bang to send an

index to a preset device, as shown in figure 5, all UI objects will send their stored values

through outlets that are connected. If done properly, all of your variables will be sent to

the .csd file immediately after the Csound performance begins, allowing your device to

receive default parameters.

There are several ways to save and load presets, but by far the simplest option is

shown in figure 5, using the live.menu and preset objects. This method allows the

creator of a device to make a preset storage method quickly and cleanly, and allows the

user to easily recall presets.

Mark Jordan-Kamholz and Dr.Boulanger. Bringing Csound to a Modern Production Environment

 82

I
C

S
C

 2
0

1
5

Figure 5 Saving and creating presets in Max

Conclusion

 In this paper, we’ve examined the basic skills needed to create a Csound for Live

device. We have learned how to run a unified Csound file that is compatible with

multiple sample rates inside of csound~. We have learned how to send parameters from

Max UI objects to Csound, via csound~, and we have learned several strategies for

creating purpose-specific UI objects. We’ve also seen how to control parameters from

within Live, store presets, and use parameters from elsewhere in Live to affect a device

via the Live API. It is our hope that integrating Csound with Live will inspire new

compositions, remixes, and music performances, and we hope that this tutorial has

given you the insight and knowledge that you need to convert, adapt, and create new

instruments that take advantage of this robust production environment.

