

Vectorisation and GPUs
extensions of ROOT::Math
routines

August 2015
Author:
Anca – Mihaela Popescu

Supervisors:
Lorenzo Moneta
Danilo Piparo

CERN openlab Summer Student Report 2015

CERN openlab Summer Student Report 2015

Project Specification

This openlab summer project aims to provide a vectorised and accelerator/gpu ready

implementation of the mathematical functions and statistical distributions offered by the

ROOT::Math namespace together with a conspicuous number of tests stressing them with

comparisons with their scalar counterparts and analytical values. The technologies involved in the

work are autovectorisation capabilities offered by modern compilers, fast implementations of

mathematical functions provided by the VDT mathematical library, explicit vectorisation via the

VC library, OpenCL and, optionally, CUDA.

CERN openlab Summer Student Report 2015

Abstract

The ROOT system provides a set of OO frameworks with all the functionality needed to handle

and analyze large amounts of data in a very efficient way. Having the data defined as a set of

objects, specialized storage methods are used to get direct access to the separate attributes of the

selected objects, without having to touch the bulk of the data. Included are histograming methods

in an arbitrary number of dimensions, curve fitting, function evaluation, minimization, graphics

and visualization classes to allow the easy setup of an analysis system that can query and process

the data interactively or in batch mode, as well as a general parallel processing framework,

PROOF, that can considerably speed up an analysis.

In addition, ROOT offers an ensemble of advanced mathematical functions such as Bessel and

Airy functions or distributions such as Landau, gammma, Cauchy or Breit-Wigner. These

functions are relevant for a variety of performance critical applications, among which the

statistical studies in HEP such as discoveries and exclusions. This kind of activities will be more

and more important during the forthcoming 13 TeV collisions at the LHC.

CERN openlab Summer Student Report 2015

Table of Contents

Project Specification..2

Abstract..3

1Introduction..5

1.1 ROOT...5
1.2 TFormulaClass...6

2 TFormulaLite Class Implementation...7

3 Eval() Implementation...9

4 Other optimisations...13

5 Tests...14

6 Integration in TFormula Class………………………………………………………………17

7 Conclusions..18

8 Future Work..18

9 References...19

CERN openlab Summer Student Report 2015

5 | P a g e

1 Introduction

ROOT is a framework for data processing, born at CERN, at the heart of the research on

highenergy physics. Every day, thousands of physicists use ROOT applications to analyze their

data or to perform simulations.

1.1 ROOT

The ROOT project was started in the context of the NA49 experiment at CERN. NA49 generates

an impressive amount of data, about 10 Terabytes of raw data per run. This data rate is of the

same order of magnitude as the rates expected to be recorded by the LHC experiments. Therefore,

NA49 was the ideal environment to develop and test the next generation data analysis tools and to

study the problems related to the organization and analysis of such large amounts of data.

ROOT provides a basic framework that offers a common set of features and tools for all domains

of High Energy Physics computing. ROOT is an ideal environment to introduce physicists

quickly to the world of Objects and C++. Thanks to the built-in CINT C++ interpreter the

command language, the scripting, or macro, language and the programming language are all C++.

The interpreter allows for fast prototypingof the macros since it removes the time consuming,

compile/link cycle. It also provides a good

environment to learn C++. If more performance is needed the interactively developed macros can

be compiled using a C++ compiler via a machine independent transparent compiler interface

called ACliC.

The system has been designed in such a way that it can query its databases in parallel on clusters

of workstations or many-core machines. ROOT is an open system that can be dynamically

extended by linking external libraries. This makes ROOT a premier platform on which to build

data acquisition, simulation and data analysis systems.

In 2002 ROOT became an official project within the Physics Department at CERN. Thanks to the

manpower injected in the project by CERN and also by FNAL, ROOT could gradually be

extended in many directions to become the cornerstone of most HEP software systems today,

covering many areas of HEP computing, like analysis, simulation, reconstruction, event display

and DAQ.

Besides in High Energy Physics ROOT is also widely used in many other scientific fields, like

astronomy and biology but also in finance and medicine.

CERN openlab Summer Student Report 2015

6 | P a g e

1.2 TFormula Class

• Class for evaluating mathematical functions provided as expression strings

• ROOT function class (TF1) derives from TFormula: uses TFormula constructs for

making functions from string

• Replace old parser with the JIT provided by Cling, a real C++ interpreter

How Does it Work:

• TFormula creates a C/C++ functions which is passed to Cling

• The created function is now compiled on the fly using the JIT of Cling

Evaluation of TFormula:

• No need to have a dedicated parser to analyze and compile the code

• JIT compilation is done at initialization time, not when evaluating the expression

• The created function is evaluated using its function pointer, which can be retrieved via the

ROOT interpreter interface

 Since the main purpose of the project is to offer a gpu ready implementation of the

mathematical functions from ROOT, the TFormula Class is not providing this feature, on account

of its inability to compute vector types.

CERN openlab Summer Student Report 2015

7 | P a g e

2 TFormulaLite Class Implementation

The implementation needed is realised, in the first instance, by an intermediate approach with a

new class: TFormulaLite Class. The TFormulaLite Class has a similar style to process, compile

and create mathematical functions as the TFormula Class: the new class processes the formula by

replacing the parameters with the corresponding values, TFormulaClass creates a C/C++ function

which is passed to Cling and the new function is compiled using the JIT.

The TFormulaLite Class is a templated class implemented with the purpose to compute any type

of formula with any type of values (vectors, PODs & others), from one dimension to four

dimensions, parameterized or not.

template<class T>

class TFormulaLite

{

 …..

};

 Moreover, the class provides template specializations, accomplished through the realization of

another templated class, which is inside the TFormulaLite.

template<class T>

class TFormulaLite

{

 ……

template <class T2>

class Evaluator

{

 ……

};

};

How to use TFormulaLite Class:

• When creating the formula, the user has to specify the type of the calculation result

wanted, the name of the function/formula and the formula

TFormulaLite<double> f1("f1", "x/2+10*x");

TFormulaLite<double> h1("h1", "p[0]*sin(x)+p[1]*x*x*x");

• When calculating the formula with a certain value, the user calls the Eval() method to

compute any type of variable.

f1.Eval(30.);

CERN openlab Summer Student Report 2015

8 | P a g e

std::vector<double> p={1.,10};

h1.Eval(30.,p);

• In case of several types, which are the most used types of variables in mathematical

functions, there are several methods implemented to obtain a straight-forward evaluation.

These cases are represented by:

 double variables

 float variables

 Vc::double_v vectors

 Vc::float_v vectors

 std::vector<double>

 std::vector<float>

Each of these methods, as well as the generic Eval() method, can be used with none or more

parameters of double or float types. The Eval() method can also be used with one or more

variables.

static T DoEvalVar(const T *x, const Int_t& nvar,

TFormulaLite<T3>& fct)

 {

……

 auto f = (T (*)(const T*))fct.fcnptr;

 return f(x);

 }

TFormulaLite Class implementation consists of:

• 2 constructors – one compound of the name and the formula and one compound of the

name, the formula and the number of parameters in the formula

• Getters&Setters methods for the double and float parameters and for the name of the

function

• Methods for obtaining the type of the value passed in the Eval() method

• Methods for processing the formula – replacing the parameters with the specific values a

• methods for pre-processing the formula – passing to Cling only a number of formulas as

TString equal to the dimension of the variable in order to have vectorised functions in the

case of std::vectors

• the generic Eval() method and the related methods for the popular types

• 1 method for obtaining the function pointer of the formula

• 2 templated classes inside: one for the specializations of the Eval() method and one for

the specializations of the Eval() method in the case of multiple variables

CERN openlab Summer Student Report 2015

9 | P a g e

3 Eval() Implementation

The Eval() method represents a method implemented with the purpose of computing any type of

variable (ex.: double, float, int, unsigned long int etc.), more exactly the vector types. This

method is actually the main difference between the TFormulaLite Class and the TFormula Class.

The algorithm of the Eval() method is:

- identify the type of the value passed by the user

- identify the name of the function created by the user

- inject in the gInterpreter (Cling) the name of the function and the type of the variable, obtaining

the function pointer

- cast the function pointer with a T type

- return the result of the function computed with the value passed by the user

static T DoEval(const T& x, TFormulaLite<T> &fct)

{

 …

 auto f = (T (*)(const T&))fct.fcnptr;

 return f(x);

}

static T DoEval(const T& x, const std::vector<float> p,

TFormulaLite<T>& fct)

{

 ……
auto f=(T (*)(const T&, const std::vector<double>&))

fct.fcnptr;

 return f(x,p);

}

In order to obtain a more efficient and an optimized way of calculation, the function pointer is

determined only once, namely the name of the function and the type of the value is passed only

once to Cling. Once the function is injected in the gInterpreter, the method will use the same

function pointer for more computations.

static T DoEval(const T& x, TFormulaLite<T> &fct)

{

if (!fInjected)

 fcnptr = InitializationEvalVar(x, fInjected);

 ……

}

void* GetSpecialisedFcnPtr(const TString& funcName, const

TString& typeName)

{

 const TString textFunction = funcName+"<"+typeName+">";

 fInjected = true;

 return (void*)gInterpreter->ProcessLine(textFunction);

}

CERN openlab Summer Student Report 2015

10 | P a g e

Another improvement is represented by the implementation of the PreProcessFormula() method,

which passes to the gInterpreter only a number of formulas, as a TString, equal to the dimension

of the variable.

For example, for one dimension variable, it passes only one TString formula templated.

 fForm = "template<class T> T ";

 fForm += GetName();

 fForm += "(const T& x) { return ";

 fForm += fFormula;

 fForm += ";} ";

gInterpreter->ProcessLine(fForm);

In the case of a std::vector<double>, the formula passed to Cling interpreter is vectorised directly

when is sent to the gInterpreter.

void PreProcessFormula(const T& x, Int_t dimension)

{

 ……

 fForm = "template<class T> T ";

 fForm += GetName();

 fForm += "(const T& x) { T result = x; ";

 fForm += "for(Int_t i = 0; i < ";

 fForm += dimension;

 fForm += "; ++i) { result[i] = " ;

 fForm += fFormula;

 fForm += ";} ";

 fForm += "return result;}";

gInterpreter->ProcessLine(fForm);

}

The template specializations made for the several types are implemented outside the main class:

 double
template <>

template <class T2> class TFormulaLite<double>::Evaluator { … };

 float
template <>

template <class T2> class TFormulaLite<float>::Evaluator { … };

 Vc::double_v
template <>

template <class T2> class TFormulaLite<Vc::double_v>::Evaluator {

… };

 Vc::float_v
template <>

template <class T2> class TFormulaLite<Vc::double_v>::Evaluator {

… };

 std::vector<double>

CERN openlab Summer Student Report 2015

11 | P a g e

template <>

template<class T2>class TFormulaLite<std::vector<double>>::

Evaluator{…};

 Std::vector<float>
template <>

template<class T2>class TFormulaLite<std::vector<float>>::

Evaluator{…};

Furthermore, in these template specializations the type of the variable is not determined through

the typeid() operator, but with another template specializations, implemented outside the

TFormulaLite Class, including the generic method of determing the variable type.

template <class T>

class Initializer

{

 T value;

 TString type;

public:

 Initializer (T arg) { value = arg; }

 TString GetType()

 {

 TString typeName = TString(typeid(value));

 return typeName;

 }

};

template <>

class Initializer <double>

{

 double value;

public:

 Initializer (double arg) { value = arg; }

 TString GetTypeDouble()

 {

 return "double";

 }

};

template <>

class Initializer <float>

{

 float value;

public:

 Initializer (float arg) { value = arg; }

 TString GetTypeFloat()

 {

 return "float";

 }

};

CERN openlab Summer Student Report 2015

12 | P a g e

template <>

class Initializer <Vc::double_v>

{

 Vc::double_v value;

public:

 Initializer (Vc::double_v arg) { value = arg; }

 TString GetTypeVDouble()

 {

 return "Vc::double_v";

 }

};

template <>

class Initializer <Vc::float_v>

{

 Vc::float_v value;

public:

 Initializer (Vc::float_v arg) { value = arg; }

 TString GetTypeVFloat()

 {

 return "Vc::float_v";

 }

};

template <>

class Initializer <std::vector<double>>

{

 std::vector<double> value;

public:

 Initializer (std::vector<double> arg) { value = arg; }

 TString GetTypeVD()

 {

 return "std::vector<double>";

 }

};

template <>

class Initializer <std::vector<float>>

{

 std::vector<float> value;

public:

 Initializer (std::vector<float> arg) { value = arg; }

 TString GetTypeVF()

 {

 return "std::vector<float>";

 }

};

CERN openlab Summer Student Report 2015

13 | P a g e

4 Other optimisations

The main optimisations added to the TFormulaLite Class are represented by introducing the

directly methods of computation for 6 types and by passing the TString formula to the

gInterpreter (Cling) as a vectorised function in the case of the std::vectors.

The TFormulaLite Class has 6 template specializations included for the most used types in

mathematical computations:

 Double

 Float

 Vc::double_v

 Vc::float_v

 std::vector<double>

 std::vector<float>

Using these template specializations by calling the Eval() method, the type of the value is

determined faster in the mathematical functios implemented.

Furthermore, the vectorised formula passed to the gInterpreter is an useful way of creating C++

functions and compiling them with JIT of Cling.

In the case of a multidimensional function, the variables are stored in a vector in the case of one

dimension variables or a matrix in the case of std::vectors or Vc vectors as variables.

fForm = "template<class T> T ";

fForm += GetName();

fForm += "(const T *x) {return " + fFormula + ";}";

fForm = "template<class T> T ";

fForm += GetName();

fForm += "(const T *x) { T result = *x; ";

fForm += "for(Int_t i = 0; i < ";

fForm += dimension;

fForm += "; ++i) { result[i] = " ;

fForm += fFormula;

fForm += ";} ";

fForm += "return result;}";

CERN openlab Summer Student Report 2015

14 | P a g e

5 Tests

To analyze the performance of the intermediate implementation, the class was tested with simple

and complicated functions by computing it with the Eval() method in a large amount of calls. The

executable file uses the Vc library, the TStopWatch library and the TSystem library with the

purpose to obtain the CPU time passed by evaluating the formula created.

The simple tests made do not represent a justificative evidence of the new implemented class

proficiency, because these tests are made of simple formulas which are computed very fast (for

example, the adding operation is a very fast and cheap one). Due to the CPU power, the time

results usually are null, because of the flunctuations and the high speed of computation.

CERN openlab Summer Student Report 2015

15 | P a g e

In order to have a relevant comparison, some complicated formulas were provided.

CERN openlab Summer Student Report 2015

16 | P a g e

The results obtained could be analized and compared with the aid of the CPU time outcome. In all

the cases, the float speciaizations offer a cheaper evaluation in terms of time, because of the loss

of the precision in the computation.

CERN openlab Summer Student Report 2015

17 | P a g e

6 Integration in TFormula Class

In order to use the new way of evaluation C++ functions/formulas, the properly functions from

the TFormulaLite Class are implemented in the TFormula Class, implementation that transforms

the TFormula Class also in a templated one with all the characteristics from the previous class.

Most of the TFormula class methods were shifted in the header file (TFormula.h), because of the

templated characteristics which implied the specification of a T type.

The modification from a simple class to a templated one involved several changings in different

files of ROOT, such as: TF1 class, TLinearFitter class, MethodFDA class, TActivationSignoid

class, TActivationRadial class, AnalyticalIntegrals class, WrappedTF1 class.

How to use the new TFormula Class:

 constructing

 1D without parameters
TFormula<double> f("f", "x*x+x+10.5");

 2D/3D/4D without parameters
TFormula<double> f("f", "x+y+z+t");

 multiple variables

 1D with parameters
TFormula<double> f("f", "p[0]*x*x+p[1]*x+p[2]*10.5");

 2D/3D/4D without parameters
TFormula<double> f("f", "p[0]*x+p[1]*y+z+p[2]*t");

 any type parameters

 evaluation

 1D without parameters
f.Eval(value);

 2D/3D/4D without parameters
f.Eval(varVector);

 1D with parameters
f.Eval(value,p);

 2D/3D/4D without parameters

f.Eval(varVector,p);

value = any value of the type passed in the constructor

varVector = vector/matrix that stores the variables (PODs, std::vectors or Vc vectors)

p = vector that stores the parameters

CERN openlab Summer Student Report 2015

18 | P a g e

7 Conclusions

To sum up, the intermediate solution TFormulaLite Class provides some extra benefits than the

basic TFormula Class implementation: the new evaluating method valid also for vector types and

for the Vc library. The implementation created with this feature is applicable from one dimension

to four dimensions and as well in the case of a parametrized formula.

The Cling interpreter gets through the TFormulaLite Class a C++ function created from the

function provided by the user, compiling it at initialization time and in the instance of a vector

variable receiving it as a vectorised formula.

The deficient characteristic of this new class is represented by the fact of the necessity of

specifying the type of the result wanted at constructing time.

TFormulaLite<double> f1("f1", "x/2+10*x");

8 Future Work

The implementation of the TFormulaLite Class is a project which can be developed and improved

by optimizing the C++ code or by using the last extensions of the compilers.

Some planned developments on this project would be:

- analysis of the Vc results

- new version in which the user does not need to specify the type of the result

- eliminating several bugs in the Vc vectors evaluation

CERN openlab Summer Student Report 2015

19 | P a g e

9 References

[1] ROOT Users Guide

https://root.cern.ch/drupal/content/users-guide#UG

[2] ROOT Reference Guide

https://root.cern.ch/drupal/content/reference-guide

[3] ROOT Classes - TFormula Class

https://root.cern.ch/root/html/TFormula.html

[4] The Pragmatic Programmer: From Journeyman to Master – Andrew Hunt, David Thoma

[5] VC library

https://root.cern.ch/drupal/content/users-guide#UG
https://root.cern.ch/drupal/content/reference-guide
https://root.cern.ch/root/html/TFormula.html

