
 

 

                                                                Improving File Transfer Service ▬ FTS3 

September 2015 

Author: 
Hamza Zafar 
Email: hamza.zafar@cern.ch 

Supervisor(s): 
Oliver Keeble 
Alejandro Alvarez 
  

CERN openlab Summer Student Report 2015 

 



CERN openlab Summer Student Report  2015 

 

Project Specification 

The Experiments at CERN generate colossal amount of data. The data centre stores it and sends it 

around the world for analysis. In the first run of LHC, 30 petabytes of data was produced 

annually, larger amounts of data are expected to be produced during the second run of LHC [1]. 

To store and process this data, CERN relies on a grid infrastructure known as WLCG (Worldwide 

LHC Computing Grid), which consists of 170 collaborating computing centres in 42 countries. 

One of the major challenges at CERN is to globally replicate and distribute the data coming 

colliders across the WLCG infrastructure. To address this problem, a file transfer service (FTS3) 

is developed at CERN for bulk transfers of physics data. In this manner, real-time LHC data is 

not only distributed and replicated across WLCG, but also made available to a community of 

~8000 physicist around the globe. 

Improving the file transfer service projects is geared towards effectively utilizing the available 

networks resources as well as introducing new algorithms in FTS3 scheduler to make intelligent 

decisions for scheduling file transfers.                                                        



CERN openlab Summer Student Report  2015 

 

Abstract 

This project deals with two aspects of improving the file transfer service – FTS3. The first one is 

the selection of best source site for file transfers. Since files are replicated at different sites, the 

selection of the best source site based on the networks throughput and success rate can have a 

major impact on FTS3. The second one is maximizing the file throughput across WLCG network 

by increasing the TCP buffer sizes. TCP is the only transport layer protocol used widely for data 

transfers; it was originally designed with focus on reliability and long-term fairness. In high 

bandwidth networks, the system administrators have to manually optimize/tune the TCP 

configurations. Some of these configurations have a major impact on throughput. TCP buffer size 

is one such setting, which sets a limit on TCP congestion window size. With the release of Linux 

Kernel 2.6, a new feature “Linux TCP Auto-Tuning” was introduced, which selects the optimal 

TCP buffer sizes based on system resource usage. Another way to increase the TCP buffer size is 

to use setsocketopts system call. Since FTS3 implements gridFTP protocol, it gives us the 

flexibility to set TCP buffer sizes manually. This project evaluates the pros and cons of different 

techniques for setting TCP buffer sizes.  

 

Keywords: FTS3, TCP , Linux TCP Auto-Tuning 

 



CERN openlab Summer Student Report  2015 

 

Table of Contents 

Contents 

1 Introduction .............................................................................................................. 6 

1.1 WLCG Architecture ...................................................................................................... 6 

1.2 Use Cases of FTS3 ...................................................................................................... 6 

1.3 FTS3 @ CERN ............................................................................................................ 7 

2 Improving the FTS3 Scheduler ................................................................................. 7 

2.1 Current Scheduling Behaviour for multiple replicas ..................................................... 7 

2.2 New Scheduling Behaviour for multiple replicas .......................................................... 8 

2.3 Caching Database Queries ........................................................................................ 10 

3 Effect of TCP configurations on throughput ............................................................ 10 

3.1 TCP Optimal Buffer Size ............................................................................................ 11 

3.2 Performance Evaluation of FTS3 transfers with and without Linux auto-tuning ........ 12 

4 Bibliography ........................................................................................................... 15 

 

 

 

 

 

 

 

 

 

 

 



CERN openlab Summer Student Report  2015 

 

List of Figures 

Figure 1: Tiers in WLCG ................................................................................................................ 6 

Figure 2: FTS3 workflow ................................................................................................................ 7 

Figure 3: Transfer request specifying multiple replicas .................................................................. 7 

Figure 4: List of scheduling algorithms with their selection criteria ............................................... 8 

Figure 5: Transfer request specifying selection strategy ................................................................. 8 

Figure 6: Activity priorities for ATLAS ......................................................................................... 9 

Figure 7: FTS3 caching layer ........................................................................................................ 10 

Figure 8: Effect of large buffer sizes on throughput ..................................................................... 12 

Figure 9: Graph for file transfer when Linux auto-tuning is in action .......................................... 12 

Figure 10: Graph for file transfer when manually setting a 16MB Buffer (32 MB allocated) ...... 13 

Figure 11: Graph for file transfers when Linux auto-tuning is in action ....................................... 14 

Figure 12: Graph for file transfers when manually setting a 32MB Buffer (64 MB allocated) .... 14 

 

 

file:///C:/Users/Zafar/Pictures/CERNopenlabSummerStudentReportTemplate_2015.docx%23_Toc428991152
file:///C:/Users/Zafar/Pictures/CERNopenlabSummerStudentReportTemplate_2015.docx%23_Toc428991153
file:///C:/Users/Zafar/Pictures/CERNopenlabSummerStudentReportTemplate_2015.docx%23_Toc428991154
file:///C:/Users/Zafar/Pictures/CERNopenlabSummerStudentReportTemplate_2015.docx%23_Toc428991156
file:///C:/Users/Zafar/Pictures/CERNopenlabSummerStudentReportTemplate_2015.docx%23_Toc428991157
file:///C:/Users/Zafar/Pictures/CERNopenlabSummerStudentReportTemplate_2015.docx%23_Toc428991158
file:///C:/Users/Zafar/Pictures/CERNopenlabSummerStudentReportTemplate_2015.docx%23_Toc428991160
file:///C:/Users/Zafar/Pictures/CERNopenlabSummerStudentReportTemplate_2015.docx%23_Toc428991161


CERN openlab Summer Student Report  2015 

6 | P a g e  

 

1 Introduction 

FTS3 [2] is one of the projects critical for the data management at CERN [3]. It is the major 

service for distributing the majority of LHC [4] data across WLCG [5] infrastructure. It provides 

reliable bulk transfers of files from one WLCG site to another, while allowing participating sites 

to control the network resource usage. FTS3 is a mature service, running for more than 2 years at 

CERN.  

1.1 WLCG Architecture 

WLCG stands for WorldWide LHC Computing Grid; it is a collaboration of more than 170 

computing centres in 42 countries. The mission of WLCG is to store, analyse and replicate LHC 

data. Figure 1 shows the architecture of WLCG, it consist of three tiers 0, 1 and 2. These tiers are 

made up of several computing centres. Tier 0 is the CERN’s datacentre, which is connected to 13 

tier 1 sites with 10Gbps links. Tier 2 sites are connected using 1Gbps links. FTS3 service plays a 

vital role in moving data across this complex mesh of computing centres. 

 

1.2 Use Cases of FTS3 

 An individual or small team can access the web interface to FTS to schedule transfers 

between storage systems. They can browse the contents of the storage, invoke and 

manage transfers, and leave FTS to do the rest. 

 A team's data manager can use the FTS command line interface to schedule bulk transfers 

between storage systems. 

 A data manager can install an FTS service for local users. The service is equipped with 

advanced monitoring and debugging capabilities which enable her to give support to her 

users. 

 Maintainers of frameworks which provide higher level functionality can delegate 

responsibility for transfer management to FTS by integrating it using the various 

programming  interfaces available, including a REST API. The users thus continue to use 

a familiar interface while profiting from the power of FTS transfer management. 

Figure 1: Tiers in WLCG 



CERN openlab Summer Student Report  2015 

7 | P a g e  

 

1.3 FTS3 @ CERN 

Four major experiments at CERN are ATLAS, CMS, LHC(b) and ALICE. The first three 

experiments use FTS for file transfer purposes. The figure 2 shows the general flow for using 

FTS3 service. The clients --- CMS, ATLAS and LHC(b) --- send file transfer requests to FTS3, 

gridFTP [6] protocol is used by FTS3 to initiate third party transfers on storage endpoints. FTS3 

supervises the transfers between the storage endpoints and finally archives the job status.  fts-

transfer-status command provided by FTS3 command line interface can be used by to inquire 

about the job status. Alternatively, clients can also use the FTS3 web interface for transfer 

management and monitoring. On average, FTS3 transfers 15 petabytes of data per month. 

 

 

 

 

 

 

2 Improving the FTS3 Scheduler 

To handle the incoming transfer jobs, FTS3 maintains a separate queue for each link between two 

WLCG endpoints. Files are usually replicated across different sites in WLCG. If a client --- Atlas, 

CMS, LHC(b) --- submits request for transferring a file with multiple replicas, then FTS3 

scheduler is responsible for selecting the best source site. The figure 3 shows a transfer request 

specifying source sites for multiple replicas. 

 

2.1 Current Scheduling Behaviour for multiple replicas 

For each site, FTS3 database maintains the count of pending files in the queue. It also contains 

information about the throughput and success rate from previous transfers. In order to choose the 

best replica, FTS3 scheduler queries the number of pending files. The site with the minimum 

number of pending files in the queue is chosen as a source site. This approach is not efficient 

because the factors like throughput and success rate are completely ignored.  

 

Figure 2: FTS3 workflow 

Figure 3: Transfer request specifying multiple replicas 



CERN openlab Summer Student Report  2015 

8 | P a g e  

 

2.2 New Scheduling Behaviour for multiple replicas 

We have developed a number of algorithms to address the short comings of FTS3 scheduling 

decisions for multiple replicas. In addition to the number of pending files in the queue, the new 

algorithms also consider the throughput and success rate when making a scheduling decision. The 

algorithms are listed in table below. 

 

 

Figure 4: List of scheduling algorithms with their selection criteria 

FTS3 clients can now mention their selection strategy in the transfer request. In this way clients 

can control the behaviour of FTS3 scheduler. The figure 5 shows a transfer request specifying the 

selection strategy. 

 

 

 

 

Algorithm Selection Criteria 

orderly Selects the first site mentioned in transfer request 

queue / auto Selects the source site with the least number of pending files 

success Selects the source site with highest success rate 

throughput Selects the source site with highest total throughput 

file-throughput Selects the source site with highest per file throughput 

pending-data Selects the source site with the minimum amount of pending data 

waiting-time Selects the source site with the earliest waiting time 

waiting-time-with-error Selects the source site with the earliest waiting time with error 

duration Selects the source site with the earliest finish time 

Figure 5: Transfer request specifying selection strategy 



CERN openlab Summer Student Report  2015 

9 | P a g e  

 

 

- Calculation of Pending Data: 
 

FTS3 maintains the priority configuration for client's activities. Figure 6 shows the 

configurations for Atlas. If a newly submitted job has higher priority than the jobs 

waiting in queue, then it takes precedence and the transfer is started immediately. 

Therefore, in order to calculate the amount of pending data in queue, we aggregate the 

amount of data for all jobs with priorities greater or equal the priority of newly submitted 

job.  

 
  

 

 
- Calculation of waiting time: 

Waiting time is defined as the time a transfer request spends in the FTS3 queue. The 

formula for calculating waiting time is as follow: 

 

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 =  
𝑃𝑒𝑛𝑑𝑖𝑛𝑔 𝐷𝑎𝑡𝑎

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
 

 

 

- Calculation of waiting time with error: 

Error is the predicted amount of data that should be resent in case of transfer failures. It 

is as follow: 

 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 = 100 − 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 
 

𝐸𝑟𝑟𝑜𝑟 =   𝑃𝑒𝑛𝑑𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 ∗  
𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒

100
 

 

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑊𝑖𝑡ℎ 𝐸𝑟𝑟𝑜𝑟 =  
𝑃𝑒𝑛𝑑𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 + 𝐸𝑟𝑟𝑜𝑟

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
 

Figure 6: Activity priorities for ATLAS 



CERN openlab Summer Student Report  2015 

10 | P a g e  

 

 

- Calculation of Finish Time: 
The algorithm named “duration” ranks the source sites based on total finish time. Finish 

time is defined as the time it takes to complete the file transfer; it also includes the 

waiting time in FTS3 queue.  

 

𝐹𝑖𝑛𝑖𝑠ℎ 𝑇𝑖𝑚𝑒 = 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑊𝑖𝑡ℎ 𝐸𝑟𝑟𝑜𝑟 +
𝑆𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝑃𝑒𝑟 𝐹𝑖𝑙𝑒 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
 

2.3 Caching Database Queries 

The new FTS3 scheduler depends on the number of pending files; throughput and success rate 

information stored in FTS3 database, so it makes a lot of queries and eventually increases the 

load on database. To overcome this problem, we have implemented a caching layer between 

FTS3 scheduler and database. In order to maximize the performance we maintain a separate 

cache for each thread. A cache entry expiration timer is configured for each cache entry. Default 

time for cache entry expiration is 5 minutes. We also ended up with situations when cache had a 

large number of expired entries. Therefore, to free the memory, we added a cache clean-up timer. 

When the cache clean-up timer expires, FTS3 caching module deletes all the expired entries from 

cache. It should be noted here that the maximum memory the cache could consume is estimated 

to be less than a megabyte. The default time for cache clean-up timer is 30 minutes. In the future, 

distributed memory caching e.g memcached [7] and Redis cache [8] can also be integrated in the 

caching layer. 

 

 

 

 

 

 

3 Effect of TCP configurations on throughput 

TCP is the only transport layer protocol used widely for data transfers; it was originally designed 

with focus on reliability and long-term fairness. In high bandwidth networks, the system 

administrators have to manually optimize/tune the TCP configurations. Some of these 

configurations have a major impact on throughput. TCP buffer size is one such setting, which 

limits the size of TCP congestion window.  

Since computer centres in WLCG infrastructure are linked with high bandwidth and high latency 

networks. We are focused on effectively utilizing the available network resources. Our end goal is 

Figure 7: FTS3 caching layer 



CERN openlab Summer Student Report  2015 

11 | P a g e  

 

to increase the throughput for FTS3 file transfers. In this section we compare and contrast impact 

of different TCP tuning methods on the throughput of FTS3 file transfers. 

3.1 TCP Optimal Buffer Size 

TCP maintains a “congestion window” to determine how many packets can be sent at one time. 

This implies that larger the size of congestion window, higher the throughput. The kernel 

enforces a limit on the maximum size of TCP congestion window. By default, on most Linux 

distributions, the maximum limit is 4MB, which is still very small for high bandwidth links. 

System admins can edit the /etc/sysctl.conf file change the default settings. The optimal TCP 

buffer size can be calculated using the following formula 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑖𝑧𝑒 = 2 ∗ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ 𝑑𝑒𝑙𝑎𝑦 

We can use the ping command to calculate the delay between two endpoints. Since ping 

command returns the Round Trip Time (RTT), the above formula can be reduced to: 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑖𝑧𝑒 = 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ 𝑅𝑇𝑇 

For example, if the ping time is 200ms and the network bandwidth is 1Gbps, then the optimal 

buffer is 25.6MB which is way larger than the default settings. 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑖𝑧𝑒 =
1 𝐺𝑏𝑖𝑡

8 𝑏𝑖𝑡𝑠
∗ 0.200𝑠𝑒𝑐 = 25.6 𝑀𝐵 

System admins have to add/modify the following setting in /etc/sysctl.conf file: 

# increase max memory for sockets to 32MB 

net.core.rmem_max = 33554432 

net.core.wmem_max = 33554432 

# increase Linux autotuning TCP buffer limit to 32MB 

net.ipv4.tcp_rmem = 4096 87380 33554432 

net.ipv4.tcp_wmem = 4096 65536 33554432 

Now there are two ways to make use of the increased TCP buffer sizes: 

- Linux TCP Auto-Tuning: 

Linux TCP auto-tuning automatically adjusts the socket buffer sizes to balance the TCP 

performance and system’s memory usage. TCP auto-tuning is enabled by default in 

Linux release after version 2.6.6 and 2.4.16. For Linux auto-tuning the maximum send 

and receive buffer limit is specified by net.ipv4.tcp_wmem and net.ipv4.tcp_rmem 

parameters respectively. 

 

- Manually setting the socket buffer sizes: 

Application programmers can mention the socket buffer sizes using the setsocketopts 

system call. net.core.wmem_max and net.core.rmem_max parameters impose an upper 

limit on the amount of memory requested for send and receive buffers respectively. The 

Linux kernel allocates double the amount of memory requested. It should be noted here 

that setting the socket buffer sizes manually disables the Linux auto-tuning. 

 

 



CERN openlab Summer Student Report  2015 

12 | P a g e  

 

 

3.2 Performance Evaluation of FTS3 transfers with and without Linux 
auto-tuning 

During our initial testing, we transferred files from CERN to Australia. Our calculations for the 

optimal buffer sizes suggested a 37 MB buffer, whereas the configured maximum TCP buffer 

size on our system was 4MB. Therefore, we increased the maximum buffer limit to 37 MB and 

calculated the throughput. The Figure 8 shows a plot of throughput with system configured with a 

4MB and a 37 MB TCP buffer. It should be noted here that the buffer sizes are not passed to fts-

transfer-submit (buffer sizes are not set using setsocketopt system call) command, in fact TCP 

auto-tuning is taking care of socket memory allocation. It is evident that increasing the default 

limits on maximum TCP buffer sizes, the congestion window can open more, which results in 

higher throughput. 

 

Figure 8: Effect of large buffer sizes on throughput 

Now the question arises, should FTS3 rely on Linux auto-tuning or the users should pass the 

buffer size to fts-transfer-submit command? 

To answer this question, we transferred files from CERN to Tokyo. The number of streams was 

set to 1. The endpoints at both sites were configured with 32 MB optimal buffer size. Receiver’s 

advertised window and CNWD sizes were recorded from tcpdump and Linux ss utility 

respectively. Figure 9 shows the results when Linux auto-tuning is in action and Figure 10 shows 

the results by passing the buffer size to fts-transfer-submit command. When we manually set the 

buffer sizes, Linux allocates twice the amount requested. Therefore, for a fair comparison with 

auto-tuning, we request half the amount of memory available for Linux auto tuning i.e 32MB.  

0

20

40

60

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

3
2

1

3
3

7

3
5

3

3
6

9

3
8

5

4
0

1

4
1

7

4
3

3

4
4

9

Th
ro

u
gh

p
u

t 
(M

B
/s

e
c)

 

Time (seconds) 

4 MB Buffer 37MB Buffer

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

D
at

a 
M

B
 

Time(seconds) 

Rcv-window Throughput CWND

Figure 9: Graph for file transfer when Linux auto-tuning is in action 



CERN openlab Summer Student Report  2015 

13 | P a g e  

 

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

D
at

a 
M

B
 

Time (seconds) 

Rcv-window Throughput CWND

 

 

With Linux auto-tuning the transfer time is 63 seconds, whereas the transfer time by manually 

setting the buffer sizes is 59 seconds. Since both transfers reach the same maximum throughput, 

we can conclude that manually setting the buffer sizes has no advantage over Linux auto-tuning. 

Auto-Tuning is a much safer option to use as compared to manually setting the buffer sizes 

because it can dynamically resize the TCP buffers based on network performance and system 

resource usage.  

We now shift our focus on comparing the effect of using multiple streams (with and without auto-

tuning). We transferred files from CERN to Tokyo with multiple numbers of streams. Figure 11 

shows a graph when Linux auto-tuning is in action. Figure 12 shows the graph of transfers when 

we are manually setting buffer sizes to 32MB. If we compare the file transfer with 1 stream (auto-

tuning vs manually setting buffer), we achieve higher throughput for manually setting buffer. 

This is due to the fact that auto-tuning can increase the CNWD up to 32MB whereas when setting 

the buffer size to 32MB , kernel allocates 64MB, then CNWD can increase up to 64MB. For 2 

and 4 number of streams the throughput is almost the same (with and without auto-tuning). It is 

also evident from the graphs that increasing the number of streams fills the pipe more quickly. 

 

Figure 10: Graph for file transfer when manually setting a 16MB Buffer (32 MB allocated) 

0

50

100

150

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9Th
ro

u
gh

p
u

t 
M

B
/s

e
c 

Time(seconds) 

1-Stream 2-Streams 4-Streams



CERN openlab Summer Student Report  2015 

14 | P a g e  

 

 

Figure 11: Graph for file transfers when Linux auto-tuning is in action 

 

Figure 12: Graph for file transfers when manually setting a 32MB Buffer (64 MB allocated) 

With this work we conclude that the operating system’s configured maximum buffer sizes are too 

small for WLCG’s high bandwidth network, the kernel enforced limits on TCP buffer sizes 

should be increased. Since, FTS3 supports 3
rd

 party file transfers, there is currently no mechanism 

to get the RTTs by remotely pinging two storage endpoints, and hence there is no possibility of 

calculating the bandwidth delay product, unless we have the access to the storage endpoint. In the 

future, we would be able to get the RTT information from WLCG perfSONAR project [9]. We 

have also seen that there is no difference on throughput whether we use Linux auto-tuning or set 

the buffer sizes explicitly. All we have to do is to increase the maximum TCP buffer size on 

storage endpoints and let the Linux auto-tuning decide optimal buffer sizes.   

Future work includes the support of distributed memory caching techniques for FTS3 caching 

layer and the performance evaluation of single file transfer with multiple streams vs. multiple file 

transfers with single stream.   

 

 

 

 

 

 

 

 

 

 

0

50

100

150

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88Th
ro

u
gh

p
u

t 
M

B
/s

e
c 

Time (seconds) 

1-Stream 2-Stream 4-Stream



CERN openlab Summer Student Report  2015 

15 | P a g e  

 

4 Bibliography 

[1] LHC Season 2. [Online]. http://home.web.cern.ch/about/updates/2015/06/lhc-season-2-first-

physics-13-tev-start-tomorrow 

[2] M Salichos, M K Simon, O Keeble A A Ayllon, "FTS - New Data Movement Service for 

WLCG". 

[3] CERN. [Online]. http://home.web.cern.ch/ 

[4] Large Hadron Collider. [Online]. http://home.web.cern.ch/topics/large-hadron-collider 

[5] WorldWide LHC Computing Grid. [Online]. wlcg.web.cern.ch 

[6] gridFTP. [Online]. https://en.wikipedia.org/wiki/GridFTP 

[7] Memchached. [Online]. http://memcached.org/ 

[8] Redis. [Online]. http://redis.io/ 

[9] WLCG perSONAR. [Online]. http://maddash.aglt2.org/maddash-webui/ 

 

 

http://home.web.cern.ch/about/updates/2015/06/lhc-season-2-first-physics-13-tev-start-tomorrow
http://home.web.cern.ch/about/updates/2015/06/lhc-season-2-first-physics-13-tev-start-tomorrow
http://home.web.cern.ch/
http://home.web.cern.ch/topics/large-hadron-collider
file:///C:/Users/Zafar/Pictures/wlcg.web.cern.ch
https://en.wikipedia.org/wiki/GridFTP
http://memcached.org/
http://redis.io/
http://maddash.aglt2.org/maddash-webui/

