Source Code Review Using Static Analysis Tools

July-August 2015

Author: Stavros Moiras

10

Supervisor(s): Stefan Lüders Aimilios Tsouvelekakis

CERN openlab Summer Student Report 2015

Abstract

Many teams at CERN, develop their own software to solve their tasks. This software may be public or it may be used for internal purposes. It is of major importance for developers to know that their software is secure. Humans are able to detect bugs and vulnerabilities but it is impossible to discover everything when they need to read hundreds' lines of code. As a result, computer scientists have developed tools which complete efficiently and within minutes the task of analysing source code and finding critical bugs and vulnerabilities. These tools are called static analysis and they are able to find, analyse and suggest solutions to the programmer in the early stages of development.

The goal of this project is to evaluate and compare as many static analysis tools as possible (both freeware and commercial) according to metrics decided by CERN Security Team. The final result should not only be a selection of tools per language that software developers should utilise but also an automated way to use them and get useful reports that will help developers write better software.

Table of Contents

Abs	stract2					
Tab	le of C	contents	3			
1	Introd	uction	5			
2	Static	Analysis Tools	5			
3	Advar	ntages and Disadvantages	6			
	3.1	Advantages	6			
	3.2	Disadvantages	6			
4	Metric	S	6			
	4.1	C / C++	7			
	4.2	Java	8			
	4.3	Python	8			
	4.4	Perl	9			
	4.5	PHP	9			
5	Types	s of Reports Generated	.10			
6	Integr	ation with Jenkins	.11			
	6.1	Instructions	. 11			
7	Future	e Work	.15			
8	Concl	usion	.15			
9	Apper	ndix (Installation Instructions)	.16			
	Cppch	eck	. 16			
	Flawfir	nder	. 16			
RATS (Rough Auditing Tool for Security)						
	VCG (Visual Code Grepper)	. 17			
	Sonar	Qube	. 17			
	Findbu	ıgs	. 18			

PMD	. 18
Codepro Analytix	. 19
Pyflakes	. 19
Pylint	. 19
Perl-Critic	. 19
PHPca	. 20
RIPS	. 20

1 Introduction

A bug is a programming error that sometimes can be exploited by an attacker to subvert the functionality of the vulnerable software by feeding it malformed inputs such as network packets or web form data that evade the program's error checks allowing the attacker to execute arbitrary code on the host. In order to exploit a vulnerability, an attacker must have an opportunity to execute the vulnerable code, for instance by sending a message to a service listening on a network port. Such an opportunity is known as an attack vector.

Vulnerabilities could range from buffer overflows, calls to vulnerable library functions to unguarded access to the root privilege ("root privilege escalation"). These may lead to a lot of consequences which could be exploited by an attacker to gain access to the vulnerable system. Fortunately, there are a number of tools to help the programmer check for these errors. While it is impossible to be completely secure, it's possible to minimize these errors.

2 Static Analysis Tools

Static analysis tools are designed to analyse a given source code in order to find programming defects. In an ideal world, such tools would automatically find programming defects with high confidence. But this is not the case for many types of programming defects due to the high false positive rate that is reported. As a result, such tools serve as a help for an analyst to detect flaws more efficiently instead of a tool that just automatically finds defects.

The tools that have been tested and evaluated at CERN are listed below:

- Codepro Analytix
- Cppcheck
- Findbugs
- Flawfinder
- Perl-Critic
- PHPca
- PMD
- Pyflakes
- Pylint
- RATS (Rough Auditing Tool for Security)
- RIPS
- SonarQube
- VCG (Visual Code Grepper)
- Commercial Vendor 1
- Commercial Vendor 2

3 Advantages and Disadvantages

3.1 Advantages

- They are very scalable and can be run repeatedly
- The output is very informative with line highlights
- Automatic scanning of bugs

3.2 Disadvantages

- They have a high false positive rate
- They cannot detect configuration issues
- In some cases code compilation is required

4 Metrics

Some metrics and results are presented below. Results derived from the tools that we evaluated and they are categorized per programming language (see detailed installation instructions in the appendix at the end of this report). A notable difference made a tool named VCG (Visual Code Grepper) which was fully customizable, the user had the ability to add new patterns for vulnerabilities to be detected. Also, it provides quick access to the file that is affected highlighting the exact line with a single click, this drastically increases the process of a manual review.

On the other hand the tool from the Commercial Vendor 2 was also very customizable, had a reasonable balance between false and true positives and most of its findings were indeed something that required attention and manual review.

Language	Files	Blank	Comment	Lines of Code
C++	18661	1220503	1585615	6935350
C/C++ Header	26775	710417	1086601	3061157
Python	9296	338607	451010	1476867
С	1305	121910	124202	606878
Java	970	24867	36896	89181
PHP	854	16389	48403	144309
Perl	275	239302	176860	190896

Below we have a table with some details of the samples that was tested.

Below there is a table explaining the values that are used in the following metrics tables. The false positives were calculated per file in most cases.

VALUES	EXPLANATION
LOW	Less than 20 false positives
MEDIUM	Approximately 20-40 false positives
HIGH	More than 40 false positives
YES	The application supports this kind of vulnerability / report
NO	The application does not support this kind of vulnerability / report

4.1 C/C++

Application	False Positives	True Positives	Buffer Overflows	Memory Leak	Uninitialized Pointer / Variable
Cppcheck	Medium	High	No	No	Yes
Flawfinder	High	Medium	Yes	No	No
RATS	High	Medium	Yes	No	No
VCG	Medium	Medium	Yes	Yes	No
Commercial Vendor 1	Medium	High	Yes	Yes	Yes
Commercial Vendor 2	Medium	High	No	Yes	Yes
Commercial Vendor 3	Low	High	No	Yes	Yes

4.2 Java

Application	False Positives	True Positives	Document empty method	Internal array exposure	XSS	SQL injections
Codepro Analytix	Medium	Low	Yes	Yes	No	No
Findbugs	Low	Medium	Yes	Yes	No	Yes
PMD	Low	Medium	Yes	Yes	No	No
SonarQube	Low	High	Yes	Yes	No	No
VCG	Medium	Medium	No	Yes	No	Yes
Commercial Vendor 1	Medium	Medium	No	No	Yes	Yes

4.3 Python

Application	False Positives	True Positives	Code Injection	Untrusted Regex	TOCTOU Vulnerability	Bad indentation	Unused Variable
Pyflakes	Medium	Medium	No	No	No	No	Yes
Pylint	Medium	Low	No	No	No	Yes	Yes
RATS	High	Low	Yes	Yes	Yes	No	No
SonarQube	Low	High	No	No	No	No	No
Commercial Vendor 1	Low	High	Yes	No	No	No	No

4.4 Perl

Application False Positive		True Positives	Insecure Random Number Generator	Untrusted User Input	Loop iterator is not lexical
Perl-Critic	High	Medium	No	No	Yes
RATS	Medium	Medium	Yes	Yes	No
Commercial Vendor 1	Low	High	No	Yes	No

4.5 PHP

Application	False Positives	True Positives	Cross Site Scripting	SQL Injection	File Inclusion
РНРса	High	Medium	No	No	No
RIPS	Medium	Medium	Yes	Yes	Yes
RATS	Medium	Low	No	No	Yes
SonarQube	Low	High	No	No	No
VCG	High	Low	Yes	Yes	Yes
Commercial Vendor 1	Medium	Medium	Yes	Yes	Yes

5 Types of Reports Generated

Application	PDF	XML	HTML	Program / Web UI	CSV	Command Line	Email
Cppcheck		Yes			Yes		
Flawfinder			Yes			Yes	
RATS		Yes	Yes			Yes	
SonarQube	Yes			Yes			Yes
VCG		Yes		Yes	Yes	Yes	
Codepro Analytix			Yes				Yes
Findbugs		Yes	Yes				
PMD		Yes	Yes		Yes	Yes	
Pyflakes						Yes	
Pylint						Yes	
Perl-Critic						Yes	
РНРса				Yes			
RIPS				Yes			
Commercial Vendor 1	Yes	Yes		Yes	Yes		Yes
Commercial Vendor 2		Yes	Yes	Yes			

6 Integration with Jenkins

Jenkins is an open source continuous integration tool and is used by software developers to speed up the development process. Using the tool, a build can be initiated with various ways, for example it can be triggered by commit in a version control system like GIT. That is why it is ideal for integration with static analysis or security tools, because the tools can be set up to run every time a build is taking place and inform the developers if bugs are presented in the code.

6.1 Instructions

In order to integrate our static analysis tools to Jenkins we have to follow the steps below:

After the installation of Jenkins we can start our browser and navigate to <u>http://127.0.0.1:8080</u> where we will we find ourselves into the Jenkins platform main interface.

First of all we have to install some vital plugins.

- 1. Manage Jenkins \rightarrow Manage Plugins \rightarrow Available Tab
- 2. Install "Email Extention Template Plugin"
- 3. Install "Publish HTML Reports"
- 4. Optional: Install "Findbugs", "PMD", "Cppcheck" plugins
- 5. Restart Jenkins

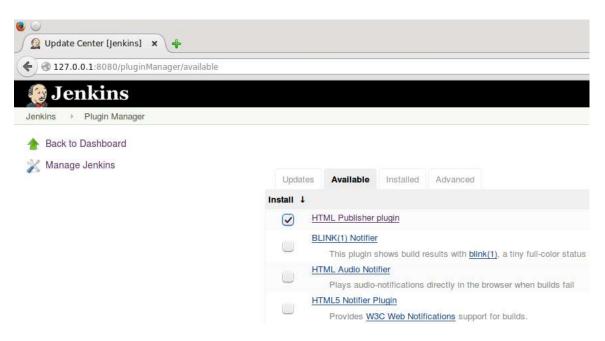
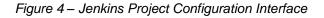


Figure 1 – Jenkins Plugin Installation

- 6. Jenkins main interface \rightarrow New Item \rightarrow Freestyle Project
- 7. Advanced → Check "use custom workspace"
- 8. Enter the directory where the sources and the reports are going to be stored.
- 9. Add build step \rightarrow Execute shell
- 10. Enter our project's build command followed by the analysis command. Example: rats --quiet --resultsonly --html /your_directory > /your_directory/report.html

Project name	test	
Description		
	[Plain text] Preview	
Advanced Proj	ect Options	
U Quiet peri	od	۲
Retry Cou	nt	۲
Block buil	d when upstream project is building	
Block buil	d when downstream project is building	
🛃 Use custo	m workspace	Ð
Directory	ljen	
Display Name	len	0
Keep the I	build logs of dependencies	
Build		
Execute s	hell	0
Command	gcc /jen/ex.c -o /jen/ex ratsquiotresultsonlyhtml /jen > /jen/report.html cppcheckenable=allinconclusivexmlxml-version=2 /jen/ex.c 2> /jen/cppcheck.xml	
L.		

Figure 2 – Jenkins Project Configuration Interface


It is important to not forget to add the report like the figure below:

Publish Cppcheck	k results					۲
Cppcheck report XM	Ls cppcheck.xm					6
	🕑 Ignore bla	nk likes				
	🛃 Do not fa	I the build if the Cppcheck report is not found				
				2	Advanced.	
					D	eintin
Publish HTML rep	ports					
Reports HTML dir	ML directory to archive /jen/	/jen/				1
Index pag	ge(s)	report.html				0
Report tit	ie .	RATS Report				0
			2	Publishing	options_	
				Dele	te report	

Figure 3 – Jenkins Project Configuration Interface

Also, we have to add the report as an attachment to make the manual review process easier for the developer.

lisable Extended Email Publisher	8
	Allows the user to disable the publisher, while maintaining the settings
Project Recipient List	\$DEFAULT_RECIPIENTS
	Comma-separated list of email address that should receive notifications for this project.
Project Reply-To List	\$DEFAULT_REPLYTO
	Comma-separated list of email address that abould be in the Reply To header for this project.
Content Type	Default Content Type
Default Subject	\$DEFAULT_SUBJECT
Default Content	\$DEFAULT_CONTENT
Attachments	\sim
	report, html Can use workups like 'module dial'''' up'. See the <u>directures of Art lieset</u> for the exact format. The base directory is <u>the workupson</u>
Attach Build Log	Do Not Attach Build Log V

Finally, to complete our project we have to configure the email settings (SMTP server, credentials) in order to send each email with the report of the static analysis tool without any problems.

SMTP server	smtp.gmail.com
Default user E-mail suffix	
 Use SMTP Authenticati 	ion
User Name	@gmail.com
Password	
Use SSL	
SMTP port	465
Charset	UTF-8
Default Content Type	Plain Text (text/plain)
Use List-ID Email Head	
Default Recipients	@cern.ch
Reply To List	@gmail.com
Emergency reroute	
Excluded Recipients	
Default Subject	Build # \$BUILD_NUMBER - RATS Report
	s
Maximum Attachment Size	

7 Future Work

There are many things to be done to have a complete automated system scanning millions lines of code. At first, we should integrate as many static analysis tools as we can in Jenkins, because as we obverse from the results all the tools have their strength and weaknesses. Furthermore, since not all of them are working both in Windows and Linux we have to research how we can integrate windows tools on a Jenkins instance.

Moreover, there are valuable security tools that have not been tested for this project and could be integrated in Jenkins platform with the same process described above.

8 Conclusion

In conclusion, source code static analysis tools help us to spot and eliminate bugs in the early stages of development when they are easy to fix. Many serious bugs can be only detected by analysing the source code which is also called "whitebox testing". The integration with Jenkins automates this process so the code can be scanned on regular basis and repeatedly like nightly builds while it keeps the output suitable for developers. In the near future, this will lead to better software quality, faster development and easier testing.

CERN's Computer Security Team provides a web page with the most recent recommendations for static analysis tools along with installation instructions: <u>https://security.web.cern.ch/security/recommendations/en/code_tools.shtml</u>

9 Appendix (Installation Instructions)

Cppcheck

- 1 Download the installer from http://cppcheck.sourceforge.net/
- 2 Run the installer

Flawfinder

- 1 wget http://www.dwheeler.com/flawfinder/flawfinder-1.31.tar.gz
- 2 tar -xzvf flawfinder-1.31.tar.gz
- 3 cd flawfinder-1.31
- 4 ./flawfinder

RATS (Rough Auditing Tool for Security)

```
Installing Dependencies - Expat Library
I wget http://downloads.sourceforge.net/project/expat/expat/2.0.1/expat-2.0.1.tar.gz
I tar -xvf expat-2.0.1.tar.gz
I cd expat-2.0.1
I ./configure && make && sudo make install
Installing RATS
I wget https://rough-auditing-tool-for-security.googlecode.com/files/rats-2.4.tgz
I cd rats-2.4
I ./configure && make && sudo make install
I ./configure && make && make
```

VCG (Visual Code Grepper)

- 1 Download the installer from http://sourceforge.net/projects/visualcodegrepp/
- 2 Run the installer

SonarQube

Installing SonarQube

- 1 Download http://www.sonarqube.org/downloads/
- 2 Unzip the distribution ie: "C:\sonarqube" or "/etc/sonarqube"
- 3 Windows / Other OS Execution
- 3a Execute StartSonar.bat in sonarqube\bin folder
- 3b Navigate and execute /etc/sonarqube/bin/[OS]/sonar.sh console

Installing SonarQube Runner

- 4 Download http://www.sonarqube.org/downloads/
- 5 Unzip the SonarQube Runner
- 6 Create Configuration File sonar-project.properties
- 7 Java Configuration File Sample
 - # Required metadata

sonar.projectKey=UNIQUE:CHOOSE_ANY_UNIQUE_KEYWORD_FOR _PROJECT

sonar.projectName=LANGUAGE::PROJECT_NAME_HERE

sonar.projectVersion=1.0

Comma-separated paths to directories with sources (required), enter
'.' for current directory

sonar.sources=.

Language

sonar.language=java

Encoding of the source files

```
sonar.sourceEncoding=UTF-8
```

Analyse a Project

- 8 <u>Windows / Other OS Execution</u>
- 8a Navigate to the Sonar-Runner dir and execute \bin\sonar-runner.bat
- 8b Navigate and execute /etc/sonar-runner/bin/sonar-runner
- 9 Scan Results are in http://localhost:9000
- 10 Credentials for logging into the system are admin/admin

Findbugs

- 1 wget http://prdownloads.sourceforge.net/findbugs/findbugs-3.0.1.tar.gz
- 2 tar -xfz findbugs-3.0.1.tar.gz
- 3 cd findbugs-3.0.1/bin
- 4 ./findbugs

PMD

- 1 Download pmd-bin-5.3.3.zip from here http://sourceforge.net/projects/pmd/
- 2 unzip pmd-bin-5.3.3.zip
- 3 cd pmd-bin-5.3.3/bin
- 4 <u>Windows / Linux Execution</u>
- 4a In Windows execute pmd.bat
- 4b In Linux execute run.sh
- 5 <u>Windows / Linux Example</u>
- 5a C:\>pmd-bin-5.3.2\bin\pmd.bat -dir c:\my\source\code -format text -R java-unusedcode,java-imports -version 1.5 -language java -debug

C:\>pmd-bin-5.3.2\bin\pmd.bat -dir c:\my\source\code -f xml -rulesets java-basic,java-design -encoding UTF-8

C:\>pmd-bin-5.3.2\bin\pmd.bat -d c:\my\source\code -rulesets javatyperesolution -auxclasspath commons-collections.jar;derby.jar

C:\>pmd-bin-5.3.2\bin\pmd.bat -d c:\my\source\code -f html -R java-

typeresolution -auxclasspath c:\my\classpathfile

5b pmd-bin-5.3.2/bin/run.sh pmd -dir /home/workspace/src/main/java/code -f html -rulesets java-basic,java-design,java-sunsecure

pmd-bin-5.3.2/bin/run.sh pmd -d ./src/main/java/code -f xslt -R javabasic,java-design -property xsltFilename=my-own.xsl

pmd-bin-5.3.2/bin/run.sh pmd -d ./src/main/java/code -f html -R javatyperesolution -auxclasspath commons-collections.jar:derby.jar

List of Rulesets with Description

http://pmd.sourceforge.net/pmd-5.3.2/pmd-java/rules/java/

Codepro Analytix

- 1 Download and Install Eclipse 3.7 Indigo
- 2 Open Eclipse and go to: Help \rightarrow Install New Software \rightarrow Add
- 3 In Name field enter: http://dl.google.com/eclipse/inst/codepro/latest/3.7
- 4 Click Next and finish the installation.

Pyflakes

- 1 yum install python-pip
- 2 pip install pyflakes

Pylint

1 sudo yum install pylint

Perl-Critic

1 sudo yum install perl-Perl-Critic

PHPca

- 1 Download PHPca https://github.com/spriebsch/phpca
- 2 Extract all the files in your home directory

Step if you do not have PHP installed

- 3 sudo yum install php
- 4 Navigate to the directory where you extracted the files
- 5 Use PHPca like this: php src/phpca.php -p "path" "file or directory"

Where "path" is the path of the php binary such as /usr/bin/php

RIPS

- 1 Download package http://sourceforge.net/projects/rips-scanner/files/
- 2 Unzip the rips-0.XX.zip in your public html directory of Apache
- 3 Browse to 127.0.0.1 (localhost) using your browser