
Integration of key-value
database in the parameter
management system of the
ALFA framework

August 2015

Author:
Tom Van Steenkiste

Supervisor:
Predrag Buncic

CERN openlab Summer Student Report 2015

CERN openlab Summer Student Report 2015

Project Specification

The Parameter classes of the ALICE/FAIR (ALFA) software framework contain and manage all

the numerical information needed to process the data. In order to analyse the raw or simulated

data, several numerical parameters are needed, such as, calibration/digitization parameters or

geometry positions of detectors. One common characteristic to most of these parameters is that

they will go through several different versions corresponding, for example, to changes in the

detectors’ definition or any other condition. This makes it necessary to have a parameter

repository with a well-defined versioning system. The runtime database (Parameter manager in

ALFA) is such a repository. It knows about all parameter containers needed for the actual

analysis. The containers can be initialized automatically from one or more inputs, and written out

to one output. Possible inputs/output mechanisms are ROOT files or ASCII files.

In this project a key-value database will be investigated as an optional IO for the runtime

database.

CERN openlab Summer Student Report 2015

Abstract

In this project, several key-value databases are compared for their performance to implement

them into the ALFA framework. As the research shows that a RAMCloud key-value database is

not suited for this project, a deep research is done into Riak instead. The case-study compares

read vs write latency, optimal simulation sample size, different storage backends, object size

influence, cluster size influence, different consistency settings and there performance impact, the

impact of adding security, the overhead of using a Java tool and the availability and fault

tolerance of Riak. All these measurements are discussed taking into account certain difficulties of

simulating a key value database. This gives us a document showing the impact of certain design

decisions in implementing a key-value store and will allow developers for future projects to easily

ascertain how changes in the database will impact performance and how to easily use a tool

developed during this project to make exact measurements.

CERN openlab Summer Student Report 2015

Table of Contents

Abstract ... 3

1 Introduction .. 6

2 Database requirements .. 6

3 Key value databases .. 7

3.1 RAMCloud .. 7

3.2 Riak .. 7

4 Database performance framework ... 10

4.1 Design .. 10

4.2 Configuration .. 12

4.2.1 Database.. 13

4.2.2 Access pattern ... 13

4.2.3 Value distribution ... 14

4.3 Extensions .. 14

4.3.1 Database.. 15

4.3.2 Access pattern ... 15

4.3.3 Value distribution ... 15

5 Case-Study: RamCloud .. 15

6 Case-Study: Riak ... 16

6.1 Read vs Write latency .. 16

6.2 Sample Size ... 16

6.3 Storage backend: Bitcask vs LevelDB ... 17

6.4 Object size ... 18

6.5 Cluster Size .. 20

6.6 Riak configuration .. 20

6.7 Security via message authentication ... 21

CERN openlab Summer Student Report 2015

6.8 Amount of Java clients ... 23

6.9 Availability and fault tolerance ... 24

6.10 Difficulties during simulation .. 24

7 Conclusion ... 25

8 Bibliography ... 26

Appendix A – Using RiakJavaClient .. 27

Appendix B – Using KeyValueClusterPerf ... 27

CERN openlab Summer Student Report 2015

6 | P a g e

1 Introduction

The ALFA framework is used to analyse raw or simulated data. When reconstructing events from

this data, the conditions and parameters of the events are important. A distinction is made

between two kinds of parameters. There are fast changing parameters which are stored with the

data itself and slower changing parameters which can be stored in a more efficient way. This

project investigates the use of a key-value database to store these parameters.

First, the requirements for a key-value database in the ALFA framework are researched. Then, a

general study into several key-value databases is done which focusses on the requirements of the

implementation in the ALFA framework. Next, a performance testing framework is developed to

equally tests all key-value databases according to the specific use case of the ALFA framework.

This performance testing framework is then used to test the key-value databases and several

important statistics are derived from these tests. Finally, a general overview of the results of this

project is given.

2 Database requirements

The first step of this project is investigating the key-value database requirements which will allow

us to focus on the important features. A first important aspect of the key-value database is that the

ALFA framework should be able to interface with it. This means that a C/C++ interface should be

available or it should be possible to develop one.

Next, we investigate the required object sizes to be stored. This can be found in the ALICE

requirement documents. [1] [2] From these documents we can derive that object sizes vary

between a few kB and 50MB. To test this range of object sizes, the following sizes should be

taken into account: 1kB, 10kB, 100kB, 1MB, 10MB and 50MB.

The access pattern is also important for the simulations. For this, we are particularly interested in

the number of reads versus the number of writes. The current statistics for the OCDB show 200

files read per run and 60 files written per run or 200MB read per run and 30MB written per run.

[2] These statistics give us a 3.33 reads per write ratio when looking at the number of files or a

6.66 reads per write ratio when looking at file sizes. As the final access pattern in the simulations,

we take the 3.33 reads per write ratio. The most important reason is that writes usually take

longer than reads in key-value databases and thus 3.33 reads per write represents the worst case

scenario.

For the simulations in this research, we will thus investigate the performance of key-value

databases with 3.333 reads per write and object sizes of 1kB, 10kB, 100kB, 1MB, 10MB and

50MB. As no exact information is available about the precise access pattern, such as when reads

happen and when writes happen, a random access pattern converging to 3.333 reads per write will

be used. Since there is also no information on the specific distribution of the value sizes, each size

will be tested separately.

CERN openlab Summer Student Report 2015

7 | P a g e

3 Key value databases

Multiple key-value databases are examined for their properties and performance for the use in the

ALFA parameter framework. The two most important candidates are RAMCloud and Riak. The

parameter framework only requires very basic functionality such as PUT and GET as all other

functionality such as versioning is handled by the parameter manager by generating different

keys. This enables us to focus on performance and robustness instead of extended functionality

sets.

3.1 RAMCloud

RAMCloud is a key-value database designed at Stanford University with an explicit focus on

performance. It offers low latency access for small objects and scalability in the amount of

storage nodes. More information on RAMCloud itself can be found on the project website. [3]

Due to the focus on performance, it seems like an ideal candidate for this project. However, the

documentation only mentions the high performance for small objects such as zero-byte objects.

As mentioned in section 2 the database should be able to store larger objects up to 50MB.

The maximum object size in RAMCloud is 1MB which is less than the size of certain parameters

currently in use as specified in the database requirements section. [4] A possible solution to the

restricted size of objects in RAMCloud is storing them by splitting them up in chunks and

merging them again when requested. To test possibilities of using RAMCloud with chunked

objects, the performance near its object limit of 1MB should be tested to see the impact of larger

objects.

RAMCloud is written in C++. To integrate it into the ALFA framework, only the RAMCloud

header has to be included and all functionality of RAMCloud is available. For library

requirements, please see the official RAMCloud documentation. [3]

3.2 Riak

Riak is a key-value store designed by Basho. It focusses on high availability, scalability and fault

tolerance and offers a lot of extra functionality. More information on Riak itself can be found on

the Basho website and the Riak documentation site. [5] [6] Riak differs from RAMCloud by

allowing users to configure it’s consistency configuration and other settings and allowing them to

store larger objects.

To integrate Riak into the ALFA framework, two options are considered. First, a C/C++ client is

developed. However, as support from Basho for the C/C++ client is limited, a Java client is also

considered.

3.2.1.1 C++ Client

For integrating a Riak database with the ALFA framework, it is preferred to use a C/C++ library

for interfacing. Riak does not officially support a client library in C or C++. However, several

libraries are available on their website. An example of this is the riak-c-client library. [7] This

library is not ready for production use. When contacting Basho concerning several problems with

the library, we were recommended to not use it as it will not be supported in the future. However,

a basic test implementation with the riak-c-client library has been made.

CERN openlab Summer Student Report 2015

8 | P a g e

Other suggested libraries are the riack library or riack-cpp library. [8] [9] However, these libraries

are either in a very early stage or have been abandoned. As good support is needed for the

libraries, these options are not a good choice. Because no C/C++ libraries with guaranteed future

support are found no C/C++ implementation is used.

3.2.1.2 Java Client

As no C/C++ library with sufficient support is available, the next option is to use a library in an

officially supported language and interface it with the ALFA framework in C++. An example of

one of these libraries is riak-java-client. [10] This library is chosen as it offers support for future

implementations.

The implementation of the interface can be found in the RiakJavaC project. [11] The interface

consist of a Java project which uses the official riak-java-client to communicate with Riak. To

allow the ALFA framework, which is written in C/C++, to communicate with the RiakJavaC

project, the Java project accepts request-messages form any programming language using Google

Protocol Buffers. These protocol buffers are send over a low overhead protocol called ZeroMQ

which was chosen as it is already used in communications of the ALFA framework. [12]

The proto files for the request-messages are also contained in the RiakJavaC project. Request-

messages can contain 4 fields of which one, the command string, is required. It indicates what is

expected with the data in the other fields. Programs can send the PUT, GET and ERROR

commands, indicating the required operation or an error. The reply commands are OK and

ERROR indicating a successful or a failed operation. The three optional fields are the key, value

or error strings. In the same project, an example implementation for a C++ program,

communicating to the Java client via these messages is shown. This can be used as a template to

interface any C/C++ application with the Java client.

The Java project consists of three main parts: the messaging package, the riak package and the

client package. The client package is the main package and starts up a MessageParser,

MessageListener and a RiakConnection. It also parses user commands from the terminal via the

CommandParser. The command parsing feature is used for debugging purposes and should not be

used for implementations. The MessageListener makes a connection towards a load balancer

which distributes the load of the requests on the different JavaRiakClient instances. It’s only task

is sending and receiving messages. When a message is received, it is forwarded to the

MessageParser to be interpreted. The MessageParser performs the command received in the

request on the RiakConnection object and returns the resulting data or an error message.

Communication between these entities can be seen in Figure 1. Please see

Appendix A – Using RiakJavaClient for information on how to use this program. To get more

information on the implementation details of the Java project, please generate the JavaDoc

documentation.

CERN openlab Summer Student Report 2015

9 | P a g e

Figure 1 - UML Class Diagram RiakJavaClient

To allow for easily extending the Riak Cluster without having to update the application

configuration, an extra node is added called the load balancer or broker. This node takes in

requests from the applications connecting to it and distributes them to RiakJavaClient instances

who connect to the load balancer as well. Currently, the load balancer is implemented according

to the standard example implementation of the Router-Dealer pattern in ZeroMQ as seen in

Figure 2. [13] The application in this figure can be any application written in a language

supporting Google Protocol Buffers and having a ZeroMQ implementation. Currently, the load

balancer uses the standard algorithms provided by the ZeroMQ framework. A future research

aspect might be into more advanced load balancing algorithms tailored to the specific use case of

this project.

CERN openlab Summer Student Report 2015

10 | P a g e

Figure 2 - Router Dealer pattern in ZeroMQ

By using the load balancer pattern, connecting applications only have to know how to reach the

load balancer. They don’t have to be aware about the backend implementation of Riak and how

many Java clients are online. The Java clients themselves are also easily configured as they only

need to connect to the load balancer and the Riak cluster.

4 Database performance framework

One of the main focusses of this project is testing the performance of key-value databases for use

in the ALFA framework. Many testing tools for databases already exist as most developers write

a benchmarking tool for their own database. However, for this research a universal tool is needed

to test each database under the same conditions which can be adjusted to the required parameters

for the framework. At the same time, the entire communication pipeline is tested as well, instead

of just the key-value database itself. Using the same tool with the same configuration to test

various key-value databases will also give a clear view on how they differ in performance for

specific use cases.

4.1 Design

A benchmarking framework for any general key-value database called KeyValueClusterPerf is

developed to test the various key-value databases. The framework is designed to be easily

configurable and was developed to cope with simulations of thousands of nodes at the same time.

If extensions are needed for a certain use case, they are easily implemented. For testing a new

key-value database one only has to write an interface class to that database with basic PUT and

GET operations.

The connections between the various classes of the framework is shown in Figure 3. The main

entry point to the program is the KeyValueClusterPerf class. This class parses the command line

arguments and launches either a SimulationWorker or a SimulationController depending on the

arguments. The SimulationController class contains all functionality to organise tasks across the

other instances of KeyValueClusterPerf that run SimulationWorkers, which receive those tasks

and perform the actual simulation, after which they report back the results. The

SimulationController is executed on the user workstation and contacts the workers via a hostfile

CERN openlab Summer Student Report 2015

11 | P a g e

specifying the different workers available. The controller expects an instance of

KeyValueClusterPerf in worker mode to be running on each of the specified hosts.

If a large number of SimulationWorkers are to be contacted, care should be taken that the

workstation configuration is adequate to handle the task. Especially the file limit and thread limit

can be of concern as a lot of ports are opened to connect to all the workers. If there are a lot of

simulations rapidly executing one after the other, the node may run out of file handlers because of

a too large linger time on TCP connections.

Figure 3 – UML Class diagram KeyValueClusterPerf

CERN openlab Summer Student Report 2015

12 | P a g e

During the simulation, the worker and controller go through several states. The first step is the

initialisation phase. During this phase, all necessary keys are written to the key value store. This

prevents requests to non-existent keys during the simulation which could impact performance

when the key-value database returns an error instead of the expected value. This could impact the

correctness of the results. This phase can be skipped via an extra command line argument. It is

recommended that only one worker node performs this phase as more workers would result in

unnecessary delay. However, when workers are given their own key-space, they should each

initialise this space.

After initialising all the possible keys via a worker node and receiving a success reply, the

controller sends the go-command to all worker nodes. The nodes then start a burn-in period

performing requests on the database according to the actual supplied access pattern and value size

distribution. This burn-in period is required to counter some small synchronisation issues when

thousands of nodes are fired up at the same time. After the burn-in period, the simulation starts

following the exact same access pattern but now timing information is also stored. Finally a burn-

out period allows straggling nodes to still get their timing information under the same load. The

burn-in, simulation and burn-out functionality is defined in the Simulator class.

When all nodes have finished the burn-out, the controller requests their timing data. As this data

can be a lot larger than the commands used to control the worker nodes, a separate port which

allows larger data chunks to be send is opened to send the data through. The controller then

merges the data using the Simulator class. When all of the data has been received, the controller

sends the exit command to all worker nodes to shut them down safely. A possible extension to

this mechanism could be to send a reset command to the worker nodes so they can immediately

be reused in a next simulation.

Users can specify their own access pattern, value size distribution and key-value database. The

framework is designed to only use the functionality supplied in the AccessPattern,

ValueDistribution and KeyValueDB abstract classes so only these functionalities have to be

fulfilled by the user specified access patterns, value size distributions or key-value databases.

However, some custom classes could require their own configuration parameters. To solve this, a

special ConfigurationManager class is designed to read in configurations form files and supply

the configuration as a key-value map to the constructor of each access pattern, value size

distribution and key-value database.

All code for this framework, including doxygen documentation can be found on GitHub. [12] For

information on how to use the tool, please see Appendix B – Using KeyValueClusterPerf.

4.2 Configuration

The KeyValueClusterPerf framework uses configuration files to correctly configure the key-value

database, access pattern and value size distribution. In this section, information on how to

configure the standard access patterns and value distributions is given. Note that in all

configuration files, comments can be added by placing a # before the line.

CERN openlab Summer Student Report 2015

13 | P a g e

4.2.1 Database

To select a specific database, write a key “databaseType” with a specific value from Table 1 in

the configuration file. Then, add extra configuration lines for that specific database.

Key-value database class Key-value database type definition

RamCloudKeyValueDB RamCloud

RiakCKeyValueDB RiakC

RiakJavaKeyValueDB RiakJava

DummyKeyValueDB Dummy

Table 1 - Key-value database type

To configure a RamCloudKeyValueDB, the communicationprotocol needs to be specified as well

as the hostname of the coordinator and the port at which it can be reached. These values are

specified using the “communicationProtocol”, “coordinatorHost” and “coordinatorPort” keys.

For a RiakC database no extra configuration is currently used. However there are some values in

the code that can be exported to a configuration file.

To configure a RiakJava database, one can specify a “security” key to indicate which security

protocol, sha1 or VMAC, to use. This key is not mandatory. An example implementation of this

can be seen in Listing 1 where a RiakJava database is configured to use VMAC as a security

protocol.

The dummy database accesses no real database and uses no configuration files.

databaseType=RiakJava

security=vmac

Listing 1 – Database configuration file example

4.2.2 Access pattern

To select a specific access pattern, write a key “accessPatternType” with a specific value from

Table 2 in the configuration file. Then, add extra configuration lines for that specific access

pattern. For the read-only and write-only access patterns, only the minimum and the maximum

key should be specified. The access pattern will then initialise all these keys and during

simulation will pick a key in the specified range. This can be useful when also testing large key

sizes. The minimum key is specified with the “minKey” value and the maximum key with the

“maxKey” value.

CERN openlab Summer Student Report 2015

14 | P a g e

Access pattern class Access pattern type definition

RandomAccessPattern Random

ReadOnlyAccessPattern ReadOnly

WriteOnlyAccessPattern WriteOnly

Table 2 - Access pattern types

To configure a random access pattern, also a read-to-write ratio should be specified with the key

“readWriteRatio”. This is a number in double format specifying how many reads should be

performed on average to every write. An example implementation for an access pattern

configuration file can be seen in Listing 2 where a random access pattern is defined with a key

range between 1 and 1000 and where there are twice as many reads as writes.

accessPatternType=Random

minKey=1

maxKey=1000

readWriteRatio=2.0

Listing 2 - Access pattern configuration file example

4.2.3 Value distribution

To configure a value size distribution, write a key “valueDistributionType” with as value the

type, as specified in Table 3, in the configuration file. Then, add extra configuration lines as with

the access pattern configuration files. To configure a constant value distribution, only the size in

bytes is needed. An example of this can be seen in Listing 3 where a constant value distribution is

defined with a value size of 1kB.

Value size distribution class Value size distribution type definition

ConstantValueDistribution Constant

Table 3 – Value size distribution types

valueDistributionType=constant

size=1000

Listing 3 - Value size distribution configuration file example

4.3 Extensions

The performance measurement framework is designed to be easily extensible to fit the users’

needs. One can add a new key-value database type, a new access pattern type or a new value

distribution in a straightforward fashion. This section will give a brief overview on how to create

a new extension for all three examples.

CERN openlab Summer Student Report 2015

15 | P a g e

4.3.1 Database

A new database type can be added by creating a new class that inherits from the abstract

KeyValueDB class. To keep the same consistency throughout the code, a constructor has to be

made that has a map<string, string> as input parameter containing the configuration for this

database type.

When the functionality for this specific database has been implemented in the PUT and GET

functions, users only have to add another ‘else if’-option in the constructor function of the

Simulator class to load the new database. For an example implementation, please see the

DummyKeyValueDB in the code. This KeyValueDB has been designed to test the performance

of the framework itself.

4.3.2 Access pattern

To add a new access pattern type, a new class should be implemented that inherits from the

abstract AccessPattern class. As with the KeyValueDB class, it is recommended to implement a

constructor with a map<string, string> as input with configuration information.

As a last step, the access pattern has to be added as an ‘else if’-option in the constructor of the

Simulator class.

4.3.3 Value distribution

A new value size distribution type can be added in exactly the same fashion as a new database or

access pattern type by inheriting from the abstract ValueDistribution class, adding a correct

constructor and adding the ‘else if’-option in the Simulator class.

5 Case-Study: RAMCloud

RAMCloud is the initial candidate of this research. All implementations and integrations for

RAMCloud have been made. As mentioned in section 3.1, RAMCloud is not able to store large

objects. However, if the performance near the object limit is sufficient, this can be solved by

chunking the objects.

The RAMCloud documentation suggests read times of 5µs and small write times on the order of

15µs. [3] It should be noted that these access times are for Infiniband connections and that the test

cluster available for this case-study is only equipped with 1Gbps connections.

The key focus of RAMCloud is thus around the 1MB limit. However, during initial testing the

performance of RAMCloud degraded very rapidly when reaching this limit leading to

unresponsiveness. As the requirements for the project require object sizes up to 50MB no further

research into RAMCloud has been done.

CERN openlab Summer Student Report 2015

16 | P a g e

6 Case-Study: Riak

Riak is the second candidate in this research. First, a study is done if it is necessary to distinguish

between reads and writes in the analysis of the data. Then, the ideal sample size for simulation is

analysed. After that, a comparison is made of different backends for Riak. Then, the impact of

object sizes is analysed. A next research is testing the impact of the cluster size on the

performance. Next, we study the impact of the configuration of Riak after which we study the

impact of adding security to the communication. Then, we research the impact of changing the

amount of Java nodes and do a literature study on availability and fault tolerance or Riak. Finally,

we discuss some difficulties with simulating key-value databases.

6.1 Read vs Write latency

To know if it is important to distinguish between read and write operations in the analysis of the

results, a test experiment is set up to see the difference in write duration and read duration when

both happen at the same time. In Table 4, the results of an experiment can be seen where 1 host

constantly reads data and 1 host constantly writes data. As the table shows, the difference in

duration is very small and not consistent. Sometimes reads are more efficient and sometimes

writes are more efficient. From this we can ascertain that the costs of the operations are amortized

across all queries when the database is under load. It is thus sufficient to do the tests with a 3.33

reads to write ratio and afterwards process all data in the same analysis.

Size Read duration Write duration % Difference

1kB 0.003456 0.003455 -0.033927

10kB 0.003673 0.003675 0.066285

100kB 0.008708 0.008708 0.005512

1MB 0.085394 0.085384 -0.010775

10MB 0.936064 0.935816 -0.026501

Table 4 - Read vs Write latency

6.2 Sample Size

As performing extensive simulations on a key-value store can take a lot of time, the next step is

investigating how large the sample set should be. For 3 different sample sets, a series of 5

simulations are performed. From these data sets, we extract the values we are interested in, the

latency and throughput, and compare the standard deviation of these values across the 5 series.

These results are shown in Figure 4 and Figure 5. From the graphs we can see that performing

100 simulation iterations is not sufficient, however there is not a lot of difference between the 250

simulations and the 1000 simulations.

CERN openlab Summer Student Report 2015

17 | P a g e

Figure 4 - Standard deviation on latency after 5 series

Figure 5 - Standard deviation on throughput after 5

series

Figure 6 - Mean of latency after 5 series

Figure 7 - Mean of throughput after 5 series

When we take a look at the averaged results across the 5 series, an interesting result appears in

Figure 6 and Figure 7. The averages across the 5 series are really close to each other, regardless

of the amount of performed simulations. It is thus more efficient to do multiple smaller simulation

sets than to do 1 big simulation set. In the following simulations, we always perform 250

simulations.

6.3 Storage backend: Bitcask vs LevelDB

Riak can be equipped with different storage backends. The storage backend takes care of

persisting the database to hard disks while Riak takes care of distributing the data across the

different nodes. Originally, Riak is shipped with Bitcask enabled. However, the storage backend

can be easily exchanged with other preinstalled storage backends such as LevelDB by changing a

value in the configuration of Riak.

During the tests, the simulations often fail due to the Riak nodes being out of memory. The

source of this problem is the way Bitcask persists the data to hard drives using a log structure.

[13] This prevents us from performing all tests using a Bitcask backend because of which, all

tests will be performed on a LevelDB backend. However, we do want some indication on the

performance implications of using LevelDB instead of Bitcask. We run tests with one Riak node

and the different backends. The results can be seen in Figure 8 and Figure 9 for the latency and

Figure 10 and Figure 11 for the throughput.

CERN openlab Summer Student Report 2015

18 | P a g e

Figure 8 - Latency using 1 Riak node with 1KB size

Figure 9 - Latency using 1 Riak node with 100KB size

Figure 10 - Throughput using 1 Riak node with 1 KB

size

Figure 11 - Throughput using 1 Riak node with

100KB size

The Bitcask results in the graphs are incomplete as performing these simulations would results in

the Riak node going down due to lack of memory. This shows the need for a different backend.

As can be seen from the graphs, the performance for latency of Bitcask is better than for

LevelDb. However, LevelDB is able to reach a higher throughput.

The main performance measure of interest is latency. During the performance tests, a lot of data

is written to the database. This is a problem for the performance tests as the nodes cannot store

that amount of data. Even when deleting the data afterwards, the storage of Bitcask keeps

growing. For this reason, LevelDB is the ideal candidate for the performance tests. The final

implementation can, however, use Bitcask as all data needs to be kept anyway and will never be

updated or deleted. For all following tests, LevelDB will be used as backend.

6.4 Object size

Next we investigate the influence of the object size on the latency and the throughput. The

latency of the requests can be seen in Figure 12 and Figure 13 and the throughput can be seen in

Figure 14 and Figure 15. Note that both parts contain the same 100kB entry. The graphs have just

been split up to make the smaller measurements clearer.

CERN openlab Summer Student Report 2015

19 | P a g e

We see the same trend for all object sizes, however the increase in latency is more severe when

object sizes grow. We can also see that the throughput is fairly constant throughout the increase

of the number of simultaneous hosts. This means that for a certain object size, the throughput is

fixed.

Figure 12 - Latency for objects of size 1kB to 100kB

Figure 13 - Latency for objects of size 100kB to 50MB

Figure 14 - Throughput for objects of size 1kB to

100kB

Figure 15 - Throughput for objects of size 100kB to

50MB

We see that for large objects, there is a large latency. However, these graphs have to be correctly

interpreted. They have been made using a constant value size. In a real application, not all

requests will be of that size. As the distribution of the value sizes is not known, we only simulated

a fixed value size to get an insight into the impact of object sizes on the database. To get a clearer

view, the distribution of value sizes should be measured and used in an extra simulation. The

measurements do give us an overview of how the database reacts to different object sizes.

CERN openlab Summer Student Report 2015

20 | P a g e

6.5 Cluster Size

To get a view of the trend when increasing the Riak cluster size, 4 different cluster sizes are

tested: 1 node, 2 nodes, 4 nodes and 8 nodes. Note that in all these arrangements, the amount of

Java clients scales the same as the amount of Riak nodes. In Figure 16 and Figure 17, the

latency is shown for object sizes of 1kB and 1MB respectively. In Figure 18 and Figure 19, the

throughput is shown for object sizes of 1kB and 1MB respectively. We can see that increasing the

cluster size improves the performance in terms of latency and in terms of throughput. We can

thus derive from this that it’s advantageous to have a larger cluster size. In section 6.9, we also

discuss the impact of increasing the cluster size on the availability.

Note that for 200 simultaneous hosts, with 8 Riak nodes and 8 Java clients, we reached the link

bandwidth of 971Mbit/s. When more hosts are added, the performance drops significantly as the

link was already saturated and all requests will now be further delayed.

6.6 Riak configuration

Riak is highly configurable and allows it’s users to select certain consistency parameters. Two of

those parameters are the amount of read acknowledgements and the amount of write

acknowledgements. In the default settings, 3 nodes reply to a read and 3 nodes reply to a write.

This provides extra consistency settings as some nodes may already have an updated version of

some data while others don’t.

Figure 16 - Latency using 1kB sized objects

Figure 17 - Latency using 1MB sized objets

Figure 18 - Throughput using 1kB sized objects

Figure 19 - Throughput using 1MB sized objects

CERN openlab Summer Student Report 2015

21 | P a g e

In Figure 20 and Figure 21, the latency for objects of size 1kB and 1MB respectively can be seen.

In Figure 22 and Figure 23 the throughput for these object sizes can be seen.

Figure 20 - Latency using 1kB sized objects

Figure 21 - Latency using 1MB sized objects

Figure 22 - Throughput using 1kB sized objects

Figure 23 - Throughput using 1MB sized objects

As expected, the latency goes down when we only ask for 1 node to acknowledge the write (no

write consistency) for small objects. The throughput also goes up in this case. However, when we

look at the data for when only 1 node should reply to a read (no read consistency), we see that the

latency increases. There are two possible explanations for this. The first is that there’s an added

overhead in the Riak cluster itself to verify that the latest data is read. The second is an error

happened during the measurements. A cause for this is explained in section 6.10.

When we look at larger objects however, both for no read acknowledgments as for no write

acknowledgements, the latency goes up and the throughput goes down. This can again be due to

an error in the measurement or due to background processes of Riak. More research has to be

done in this section.

6.7 Security via message authentication

Another aspect of the project is looking into the effect on performance by adding security features

to the communication. The only required security feature is message authentication. The Riak

Java client has to be sure that the message came from our application and that it has not been

tampered with. To achieve this, two possibilities are investigated. First, an HMAC is appended to

the communication between the ALFA framework and the broker. We can safely assume that the

communication between the broker and the Riak cluster and the API of the Riak cluster itself is

sufficiently secured by means of firewalls. The other possibility is using a VMAC.

CERN openlab Summer Student Report 2015

22 | P a g e

As we are only interested in the performance of this operation, we do not consider the problem of

distributing the keys or any other data needed for the authentication. The only aspect we consider

is the duration of calculating the authentication over the full message. The calculated MAC is also

not appended to the message as the impact on the final message size is negligible. As the

calculated string is never used, some tricks are needed to prevent the compiler from optimising

away the calculations. The end result of the calculation is stored as a publicly accessible variable

to the class to prevent any optimisations.

For calculating the HMAC, a SHA1 is used. The communication between the application and the

broker requires weak collision resistance, also called second preimage resistance. As no strong

collision resistance is needed, a SHA1 over the message and a private key suffices to fulfil the

security requirement. In the KeyValueClusterPerf framework it is implemented via the SHA1-

library by Steve Reid, Bruce Guenter and Volker Grabsch. In the broker, basic Java functionality

is used to calculate it. The broker can be started in security mode by adding the ‘secure’

command line argument. The KeyValueClusterPerf framework can be started in security mode by

adding a security specification in the database configuration file for the RiakJavaDB.

An HMAC via SHA1 is a very common implementation. However, another interesting

implementation is using a VMAC which has been optimised for speed. For the

KeyValueClusterPerf framework, the VMAC implementation by Ted Krovetz is used. This

implementation uses assembly code and memory alignment to get the best possible performance.

For the Java broker however, there is no existing implementation. Because of this, only the

difference in performance at the application side, in comparison to SHA1 can be measured.

Figure 24 - Latency using 1kB sized objects

Figure 25 - Latency using 1MB sized objects

Figure 26 - Throughput using 1kB sized objects

Figure 27 - Throughput using 1MB sized objects

CERN openlab Summer Student Report 2015

23 | P a g e

Figure 24 and Figure 25 show the difference in latency and Figure 26 and Figure 27 show the

difference in throughput between no security, SHA1-authentication and VMAC-authentication.

We can clearly see that for small objects, that the SHA1 implementation increases the latency a

lot. In comparison the VMAC implementation doesn’t increase the latency that much. However,

the VMAC implementation still multiplies the latency by a significant amount. When looking at

the throughput, the difference between the VMAC and the no security is very clear. The drop in

latency between 100 simultaneous hosts and 200 simultaneous hosts can be explained by the fact

that under normal circumstances, the benchmark is highly IO-bound. However, with the addition

of the security features, the benchmark also uses a lot of CPU power.

When looking at the performance for larger objects, we see that the latency actually decreases.

This might be due to an measurement error although this result has been repeated. An explanation

could be that with larger objects, the hosts try to contact the database less often because they are

busy calculating the security codes and thus actually reduce the load on the database. More

research has to be done into this aspect.

6.8 Amount of Java clients

During all previous tests, when we scaled the cluster size, we also scaled the amount of Java

clients for the cluster equally. In this section we investigate the actual influence of scaling the

Java client.

In figure Figure 28 and Figure 29, the latency for three different setups can be seen for objects

sizes of 1kB and 1MB respectively. In Figure 30 and Figure 31, the throughput for these same

setups can be seen. The three setups under study are a cluster with 8 Riak nodes and 8 Java

clients, a cluster with 1 Riak node and 8 Java clients and a cluster with 8 Riak nodes and 1 Java

client.

Figure 28 - Latency using 1kB sized objects

Figure 29 - Latency using 1MB sized objects

CERN openlab Summer Student Report 2015

24 | P a g e

When looking at the graphs, we can clearly see that having only 1 Java client has a significant

detrimental impact on the performance. From this we can derive that the Java client is a

bottleneck in the application. We can also see that for small objects, it’s advantageous to have a

smaller Riak cluster than usual. However, for larger objects, the larger Riak cluster has more

advantages. Note that no measurements have been done for large objects and 8 Riak nodes and 1

Java clients as this would not supply any more relevant data and other measurements still had to

be performed.

6.9 Availability and fault tolerance

No physical test have been done to investigate the availability and fault tolerance performance of

Riak. However, a small investigation into this subject has been made.

Riak is highly configurable, and so is it’s replication policy. By default, data is stored on 3

different vnodes. These vnodes can be distributed across multiple physical nodes or even across

different datacentres in case of Riak Enterprise. However, this is only possible if the amount of

Riak nodes is sufficient to store the amount of replicas.

From this we can learn that having more nodes increases the availability and fault tolerance. If

more assurance is needed, the amount of replicas can also be changed to distribute it across more

nodes.

There has been no investigation into the recovery performance of Riak after a node went down.

However, a significant impact can be expected as background processes will try to redistribute all

data in the cluster to guarantee its safety. More research has to be performed in this section.

6.10 Difficulties during simulation

In some sections, it was mentioned that not all data can be trusted and that there might be errors

in the data. This is due to typical difficulties of benchmarking databases and in particular Riak.

When testing the database, a clean database is preferred. However to clean it out each time after

running only 1 test takes a significant amount of time and might fire up some background process

which could impact performance longer than anticipated.

Another difficulty during simulation is that the database might start background processes

without the knowledge of the tester. An example of this is a merging process which starts when

the nodes use Bitcask as a backend and are almost running out of memory. Then, a process will

Figure 30 - Throughput using 1kB sized objects

Figure 31 - Throughput using 1MB sized objects

CERN openlab Summer Student Report 2015

25 | P a g e

go through the log files to try to merge them and make them smaller. However, this process

impacts performance significantly and could alter simulation duration results.

Other possible impacts on performance during simulation are other processes, not from the

database, interfering with the processing power available to the database on the same node. Or,

other nodes might be interfering with the network capacities the cluster is using.

During the tests there was a clear indication that at some points, a background process was

impacting performance. This process is still not identified. It can be detected by running the same

simulation twice in a row and comparing the results. A significant difference can be seen. This

difference fades out with time and thus gets smaller and smaller. When this was detected, care

was taken not to run any simulations at that moment. However, care should also be taken when

interpreting the results. There could always be a result during which there was interference from

some process.

Ideally, the simulations would be repeated multiple times with a clean database. However, this is

very time consuming and was not possible during the time span of the project. Because of this,

significant efforts have been made to keep checking if the results received make sense and if the

simulation should be repeated at a later time to verify.

7 Conclusion

During this project two key-value databases were investigated: RAMCloud and Riak. As

RAMCloud was written in C++, it’s integration went much more smoothly than the Riak

integration for which no future proof C/C++ client could be found. Being able to integrate Riak as

a Java client did show the flexibility of the ALFA framework.

A lot of simulations were run using different setups of Riak, of the Java clients and of the

configurations. These data now show the trend lines and sometimes exact information about

certain uses cases of a Riak database. However, more testing should be done using the exact

access pattern and value distribution needed. For this to work, a test should be done that measures

this exact data to provide as input to the performance framework. As this performance framework

has been designed to be easily configurable and extendable, this should be a straightforward step.

In this project, we investigated the difference between read and write performance, the optimal

simulation size to get valid data, the usage of different storage backends, the influence of

different object sizes, the influence of different cluster sizes, the performance difference with

using more relaxed consistency settings, the impact of using security features, the bottlenecks in

the designed software and the availability and fault tolerance of Riak. All these results were

carefully balanced taking into account several difficulties of testing key-value databases.

Some future work is still possible such as testing other databases, making a C/C++ integration for

Riak, deeper investigations into security, using different and more advanced load balancer

mechanisms and most importantly testing according to the actual specific access pattern and

value distribution that will be used.

This document can now serve as a guideline indicating several important key-value database

performance implications, implementation specification for a Java interface to Riak and an

implementation specification for the developed performance framework.

CERN openlab Summer Student Report 2015

26 | P a g e

8 Bibliography

[1] ALICE, “ALICE Technical Design Report”, 2015

[2] R. Grosso, “Database and data flow for conditions in Run 3”, 2014

[3] RAMCloud, “RAMCloud project page”,

https://ramcloud.atlassian.net/wiki/display/RAM/RAMCloud

[4] “The RAMCloud Storage System,” ACM Transactions on Computer Systems

[5] Basho, “Basho” http://basho.com/

[6] Basho, “Riak Documentation” http://docs.basho.com/riak/latest/

[7] Basho-labs, “riak-c-client” https://github.com/basho-labs/riak-c-client

[8] Algernon, “riack” https://github.com/algernon/riack

[9] ajtack, “riak-cpp” https://github.com/ajtack/riak-cpp

[10] Basho, “riak-java-client” Available: https://github.com/basho/riak-java-client

[11] Tom Van Steenkiste, “RiakJavaC” https://github.com/tdvsteen/RiakJavaC

[12] M. Al-Turany, “ALFA: Next generation concurrent framework for ALICE and FAIR

experiments”

[13] ZeroMQ, “ZeroMQ Guide Chapter 3” http://zguide.zeromq.org/php:chapter3

[14] Tom Van Steenkiste, “KeyValueClusterPerf”

https://github.com/tdvsteen/KeyValueClusterPerf

[15] J. Sheehy, D. Smith, “Bitcask, A log-structured hash table for fast key/value data,” Basho

Technologies

[16] ZeroMQ, “ZeroMQ” http://zeromq.wdfiles.com/local--files/sandbox%3Adealer/fig1.png

CERN openlab Summer Student Report 2015

27 | P a g e

Appendix A – Using RiakJavaClient

To execute RiakJavaClient, the correct configuration in the project should first be supplied.

Currently, it is configured by in-code parameters. However, this can very easily be updated to use

an external format of configuration file according to standard of the system in which it will be

used.

In the main function, the list of addresses on which the Riak cluster can be contacted should be

supplied. If the nodes in the Riak cluster are changed, this list should also be updated. In the run

function of the MessageListener, a connection to the load balancer should be supplied. This

consists of the address and a port on which it is accessible. Again, this is very easily updated to

use external configuration files.

Before executing the RiakJavaClient, the load balancer should first be deployed. To execute the

load balancer from the command line, execute the command in Listing 4. Make sure the

hwbroker.jar and zmq.jar files are in the directory and that the ZMQ and JZMQ libraries are

installed and accessible. If SHA1 checking should be simulated, append “secure” to the command

in Listing 4 and if debug information should be visible, append “debug”. Be careful using the

debug command as it will print out information each time it receives a message.

java -cp zmq.jar:hwbroker.jar hwbroker.HwBroker

Listing 4 - Starting the load balancer

After starting up the load balancer, you can start up one or multiple instances of RiakJavaClient.

To start an instance, use the command in Listing 5. Make sure the generated jar of the

RiakJavaClient project and the generated libraries folder is present in the directory and that the

ZMQ, JZMQ and Google Protocol Buffers libraries are installed and accessible. If you want to

simulate writes or reads with no consistency verification settings in Riak, append

“writeQuorumOff” or “readQuorumOff” to the command in Listing 5. If more advanced

consistency settings are needed, the application can easily be updated to accept input parameters

from the command line to specify these settings.

java -cp ./lib/*:RiakJavaClient-1.0-SNAPSHOT.jar com.cern.riakjavaclient.main

Listing 5 - Starting RiakJavaClient

Appendix B – Using KeyValueClusterPerf

To run a KeyValueClusterPerf simulation, one or more instances of the application are required.

They can be executed manually but there are also a few bash scripts available to automate the

simulation. First the application has to be build. This can easily be done by executing the “make”

command.

Next, the hosts on the worker nodes have to be started. This can be done by executing the

command in Listing 6 with as PORTNUM and DPORTNUM the communication port and data

port respectively to be used. These are ports the controller instance will connect to, so you should

make sure that the firewall allows communication across these ports. When multiple worker

CERN openlab Summer Student Report 2015

28 | P a g e

instances are used, only one of them has to do the initialisation of the key value database as

explained in section 4.1 so the initialisation can be skipped on the other nodes by adding the

“--skipinitialisation" flag.

./keyvalueclusterperf --port PORTNUM --dport DPORTNUM

Listing 6 - Starting a worker instance of keyvalueclusterperf

The process described in the previous paragraph can easily be automated to execute multiple

worker instances on the same node by running the “multiRun.sh” script which can be found in the

keyvalueclusterperf repository. To run this script, specify the lowest port number for commands

and the lowest port number for data in the script itself and supply the amount of instances to

launch as a command line argument. This argument to specify the amount of hosts is useful when

running simulations.

The final step to run the simulation is to launch the controller instance. This instance will then

start contacting all worker nodes to perform the simulation. To know which nodes to contact, a

host file has to be specified. This file contains entries which specify the nodes on which instances

are running as well as the ports on which they are running. First, the hostname is specified. Then,

the first port number is specified followed by the last port number. The last specification is the

first data port number. As the previous two port numbers already showed the number of active

instances, the last data port number is not specified. An example file can be seen in Listing 7.

This host file specifies that on the localhost, 5 instances are running with command ports 2000 to

2004 and data ports 3000 to 3004.

#This is a comment line

#hostname:firstCommandPort|lastCommandPort|firstDataPort

localhost:2000|2004|3000

Listing 7 - Example host file

Finally, the simulations themselves can also be automated. A script called “multisim.sh” is

provided in the keyvalueclusterperf repository to automatically test a key value database in a

certain configuration with varying number of simultaneous hosts and varying value sizes. Note

that when executing this script, a password for the private key will be asked to be able to connect

to the nodes running the keyvalueclusterperf instances. The script uses several Ansible playbooks.

The first step is to update all nodes to the correct value size distribution using an Ansible

playbook to push an updated file. The following step is to start the keyvalueclusterperf instances

on the remote nodes by using the cmd-startkeyvalueclusterperf.yml Ansible playbook. When this

is finished, the controller instance is activated locally, or on a remote node. At the end of the

simulation, all remaining keyvalueclusterperf instances on the nodes are stopped and the next

simulation is started.

Apart from playbooks to start and stop the keyvalueclusterperf instances, there are also playbooks

to deploy new builds of the software or new configuration files. These scripts can be found on the

GitHub repositories of the respective projects in the scripts-folder.

	Integration of key-value database in the parameter management system of the ALFA framework
	August 2015
	Author:
	Tom Van Steenkiste
	Supervisor:
	Predrag Buncic
	CERN openlab Summer Student Report 2015

	Project Specification
	Table of Contents
	1 Introduction
	2 Database requirements
	3 Key value databases
	3.1 RAMCloud
	3.2 Riak
	3.2.1.1 C++ Client
	3.2.1.2 Java Client

	4 Database performance framework
	4.1 Design
	4.2 Configuration
	4.2.1 Database
	4.2.2 Access pattern
	4.2.3 Value distribution

	4.3 Extensions
	4.3.1 Database
	4.3.2 Access pattern
	4.3.3 Value distribution

	5 Case-Study: RAMCloud
	6 Case-Study: Riak
	6.1 Read vs Write latency
	6.2 Sample Size
	6.3 Storage backend: Bitcask vs LevelDB
	6.4 Object size
	6.5 Cluster Size
	6.6 Riak configuration
	6.7 Security via message authentication
	6.8 Amount of Java clients
	6.9 Availability and fault tolerance
	6.10 Difficulties during simulation

	7 Conclusion
	8 Bibliography
	Appendix A – Using RiakJavaClient
	Appendix B – Using KeyValueClusterPerf

