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Overview of structural genomics: from structure to function

Chao Zhang' and Sung-Hou Kim*

The unprecedented increase in the number of new protein
sequences arising from genomics and proteomics highlights
directly the need for methods to rapidly and reliably determine
the molecular and cellular functions of these proteins. One such
approach, structural genomics, aims to delineate the total
repertoire of protein folds, thereby providing three-dimensional
portraits for all proteins in a living organism and to infer molecular
functions of the proteins. The goal of obtaining protein structures
on a genomic scale has motivated the development of
high-throughput technologies for macromolecular structure
determination, which have begun to produce structures at a
greater rate than previously possible. These new structures have
revealed many unexpected functional and evolution
relationships that were hidden at the sequence level.

Addresses

Department of Chemistry and Calvin Laboratory, Lawrence Berkeley
National Laboratory, University of California at Berkeley, Berkeley, CA
94720, USA

“e-mail: shkim@cchem.berkeley.edu

fCurrent address: Plexxikon, Inc., 91 Bolivar Drive, Berkeley, CA 94710,
USA

Current Opinion in Chemical Biology 2003, 7:28-32

This review comes from a themed issue on
Proteomics and genomics
Edited by Matthew Bogyo and James Hurley

1367-5931/03/$ - see front matter
© 2003 Elsevier Science Ltd. All rights reserved.

DOI 10.1016/S1367-5931(02)00015-7

Abbreviations

AdoMet S-adenosyl-methionine

FAD flavin adenine nucleotide

HAP 6-N-hydroxyaminopurine

ITP inosine triphosphate

NAD" nicotinamide adenine dinucleotide
PDB Protein Data Bank

Introduction

The genomes of more than 100 prokaryotic and eukaryotic
organisms have been sequenced (http://www.ncbi.nih.gov/
Genomes/ and htep://www.tigr.org/). In all genomes
sequenced to date, a large portion of these organisms’
predicted protein-coding regions encode polypeptides of
unknown biological functions (also called hypothetical
proteins). A major challenge is to find ways to reliably
and rapidly determine the molecular (biochemical and
biophysical) and cellular functions of these proteins. One
approach for assigning the molecular function of a protein
is first to determine its three-dimensional structure by

either X-ray crystallography or NMR, and then to compare
the solved structure against known structures in the pro-
tein structure databases. If there are one or more signifi-
cant structural homologues, the hypothetical protein is
predicted to have molecular functions similar to those of
the homologues, despite the absence of sequence simila-
rities. The predictions can then be tested experimentally.
The molecular function provides a basis for searching for
the cellular function of the protein in combination with
other genomics and proteomics techniques (e.g. expres-
sion profiling, protein interaction mapping, gene knock-
out). This method, structural genomics [1], is far more
sensitive than primary sequence comparisons because
proteins performing similar or related functions, albeit
having insignificant sequence similarity, may have similar
structure or fold [2-4].

Since the publication of the first structural genomics test
case in 1998 [1], in which the crystal structure of a
hypothetical protein revealed its molecular function,
many similar studies have been carried out [5-7]. The
compelling results from these pilot studies helped to
initiate a major international effort to obtain protein
structures on a genomic scale [7,8], with multi-institu-
tional collaborations formed all over the world [9-11].
Although infrastructure building and technology devel-
opment are still the main focus of structural genomics
programs [12-18], a considerable number of protein struc-
tures have already been produced, some of them coming
directly out of semi-automated structure-determination
pipelines [17,19,20°,21,22°]. A search of the October 2002
release of the Protein Data Bank (PDB) [23] returned 117
PDB entries containing the key words ‘structural geno-
mics’. Given the delay between structure deposition and
release, such a list is likely to represent only a fraction of
the structures solved by the structural genomics programs
over the past three years. Here we select a few examples
from the list to illustrate the type of structural insights
that would be expected from a structural genomics pro-
ject and, in particular, how information flows from the
atomic coordinates to a functional characterization of a
protein.

From structure to function

The assignment of biochemical activity to a protein of
unknown function is most straightforward when the new
structure resembles that of proteins whose functions are
known. Structural similarities yield powerful clues to
biochemical function that are not evident from sequence
alone. For example, although there was no detectable
sequence similarity between MJ0882, a hypothetical pro-
tein from Methanococccus jannaschii (M]), and any of the
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The structure-based sequence alignment of the AdoMet-binding region of methyltransferases. Included in the alignment are four methyltransferases
identified by the structural genomics approach, MJ0882, MJ0697, HI0319/YecO and MT0146/CbiT, and six previously known methyltransferases,
catechol O-methyltransferase (COMT), histamine N-methyltransferase (HNMT), phenylethanolamine N-methyltransferase (PNMT), cytosine-
5-methyltransferase Hhal, chemotaxis receptor methyltransferase CheR, and protein arginine methyltransferase 3 (PRMT3). Secondary structure
elements of MJ0882 are marked above the alignment. 3-Strands and a-helices of individual proteins are highlighted in blue and red shades,
respectively. Conserved residues are shown in yellow shade. The residues important for AdoMet binding are indicated by purple circles.

known methyltransferases, the crystal structure of
M]J0882 (PDB code: 1dus; deposited in January 2000
[24]) revealed an S-adenosyl-methionine (AdoMet)-
dependent methyltransferase fold. The methyltransfer-
ase activity of MJ0882 inferred from the structure was
subsequently confirmed by biochemical experiments.
Structural genomics has also led to the discovery of
two other unsuspected methyltransferases. The first is
a previously unannotated protein from Haemophilus influ-
enzae, H10319/YecO, whose structure had a methyltrans-
ferase fold and a bound S-adenosyl-homocysteine (the
methylation by-product) [25]. The second protein,
MTO0146/Cbi'T from Methanobacterium thermoautotrophi-
cum, was originally annotated as a precorrin decarboxy-
lase. The structure of M'T0146, however, showed the
canonical AdoMet-depdendent methyltransferase fold,
suggesting a reclassification of the enzymatic function
of the protein [26°]. In addition, there is at least one
earlier report of an AdoMet-dependent methyltransferase
suggested by structure [27]. MJ0697 is likely to be a rRNA
methyltransferase on the basis of its homology to the
yeast protein fibrillarin, which is essential for pre-rRNA
maturation [28]. The fact that methyltransferases have
been identified repeatedly in structural genomics projects
suggests that many methyltransferases may have been
overlooked by the current genome annotations. A struc-
ture-based sequence alignment of MJ0697, M]J0882,
HI0319 and M'T0146 with other methyltransferases of
known structures revealed moderate sequence conserva-

tion in the core AdoMet-binding region of the enzymes
(Figure 1). A hidden-Markov model [29] built using such
an alignment has demonstrated much higher sensitivity in
detecting unannotated methyltransferases (Zhang C, Kim
S-H, unpublished data).

T'he unexpected presence of a ligand in the structure of a
hypothetical protein can also help to infer its biochemical
functionand can be readily tested experimentally. This was
the case with protein MJ0577 where ATP was fortuitously
co-crystallized with the protein, which immediately sug-
gested a possible role of the protein in ATP hydrolysis [1].
The ATP-binding pocket of MJ0577 contains some of
the motifs commonly found in nucleotide-binding pro-
teins, but has a different sequential arrangement of the
motifs compared with others, and thus has evaded the
detection of existing motif-based search methods. In
another example, the MT0150 protein was found to
be co-purified and co-crystallized with NAD™, and the
structure later solved has a nucleotide-binding fold simi-
lar to several nucleotidyltransferases [19]. Additional
biochemical studies have confirmed that M'T0150 has
nicotinamide mononucleotide adenylyltransferase activ-
ity, and the solved structure corresponds to the product-
bound form of the enzyme. It is worth noting that the
bound ligand does not have to be the natural ligand
or cofactor to be useful for understanding the function.
When other biological information is available, a fortui-
tously trapped buffer molecule can sometimes shed
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light on the possible biochemical function of the protein.
For example, the structure of the Thermotoga maritime
protein TM0423 included a Tris buffer molecule bound
in the enzyme’s active site, which seemed to mimic
a glycerol substrate and suggested that TMO0423 is a
glycerol dehydrogenase [20°].

Structure-based function assignments can suggest possi-
ble biochemical function and, sometimes, the cofactors or
substrates, of a hypothetical protein. In cases when the
protein has known cellular function, the knowledge of the
biochemical function helps to reveal the molecular
mechanism for a cellular process. The study of the
thymidylate synthase-complementing proteins offers an
interesting example where independent projects con-
verge to give functional and structural characterization
of an important protein family. Found almost exclusively
in organisms that lack thymidylate synthase, thymidylate
synthase-complementing proteins synthesize the essen-
tial DNA precursor thymidylate by an alternative path-
way. The exact mechanism of the pathway had been
unknown until very recently; a combination of biochem-
ical and structural studies revealed a novel flavin-depen-
dent mechanism for thymidylate synthesis [20°,30°]. The
structure of a member of the thymidylate synthase-com-
plementing proteins from 7. maritime, TM0449, has been
solved as part of a structural genomics programme [20°].
The structure revealed a large pocket in the centre of a
"T™M0449 tetramer and a bound flavin adenine nucleotide
(FAD) molecule in each of the four equivalent putative
active sites in the pocket. Independent biochemical
assays of another member (ThyX) of the same protein
family indicated that the activity of the enzyme was
dependent on reduced flavin nucleotides [30°]. These

Figure 2

results, together with the fact that FAD-binding residues
are highly conserved in the ThyX protein family, suggest
that FAD is the genuine cofactor for the alternative
thymidylate synthesis pathway. The delineation of this
mechanism has important implications for the evolution
of DNA synthesis machineries and the design of new
antimicrobial strategies.

Even when there are no bound ligands or close structural
homologues of a hypothetical protein, the three-dimen-
sional structure of the protein can, sometimes, suggest
one or more testable molecular and cellular functions.
The case of MJ0226 particularly illustrates how knowl-
edge of a structure can lead to simple experiments that
provide immediate insights into both biochemical and
cellular functions [5]. Although the structure of MJ0226
has a new fold, it has limited structural similarity with a
group of nucleotide-binding proteins (using the program
DALI [31] with a Z score below 4). Nucleotide-binding
assays on MJ0226 showed that the protein interacts with
both ATP and GTP and that MJ0226 has weak nucleotide
triphosphatase activity. Subsequent analysis found that
xanthine triphosphate (X'TP) and inosine triphosphate
(I'TP) are better substrates for MJ0226. On the basis of the
structural and biochemical information, and an observa-
tion that MJ0226 is homologous (30% sequence identity)
to yeast HAM1 protein, which is required for the survival
of yeast in the presence of modified bases [32], it has been
proposed that the cellular function of MJ0226 may be to
prevent mutations by protecting DNA from incorporation
of modified purine bases such as dX'TP or dI'TP. This
prediction has recently been confirmed by a complemen-
tation experiment (Y Pavlov, personal communication;
Figure 2). When MJ0226 is overexpressed in Escherichia
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MJ0226 overexpression protects E. coli host from toxic effect of HAP. When E. coli was transformed with plasmids without (left) and with MJ0226
(right), E. coli without MJ0226 dies where HAP is spotted (central circular regions in both photos) but E. coli with MJ0226 survives.
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coli, the host strain is protected both from toxic and
mutagenic effects of base analogue 6-N-hydroxyamino-
purine (HAP).

Another principal goal of structural genomics is to popu-
late the protein structure or fold space [33-35], thereby
providing representative structures for all existing protein
families. This implies that a large fraction of the new
structures produced by structural genomics projects
would not have close structural homologues in the current
protein database, and thus their functional assignments
remain a challenge. An analysis of the 117 PDB entries
mentioned above indicates that the structures contribu-
ted by structural genomics show a much higher prob-
ability of revealing new folds or new variations of existing
folds than other PDB structures deposited during the
same period of time. This vindicated the target selection
strategies that have been employed by various structural
genomics consortia to maximize the information return of
structure determination [36—40]. When a new fold is
revealed, the universe of known protein folds is enriched,
and once the function is determined from its structure and
other means, novel structure—function relationships are
established. With improved understanding of the struc-
ture—function relationships of proteins, structural bioin-
formatics tools can play an important role in expediting
this process. Meanwhile, homology modeling using the
solved structure as a template enables a structural
description and function prediction of a large number
of protein sequences that fall within the ‘modeling dis-
tance’ [41,42°,43,44].

Conclusions

In summary, structural genomics is likely to reveal to us a
global view of the protein structure universe and to
complement other genomic and proteomic technologies
in providing molecular functions of many proteins of
unknown function. This opens the perspective that, in
a foreseeable future, many cellular processes can be
correlated to the physics and chemistry of the individual
proteins or fold domains involved in the processes.
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