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Abstract

The obliquity, or angular separation between orbit normal and spin pole, is an important parameter for the geodynamics of m
System bodies. Tidal dissipation has driven the obliquities of the Galilean satellites of Jupiter to small, but non-zero values. W
estimates of the free and forced obliquities of these satellites using a simple secular variation model for the orbits, and spin pole
rate estimates based on gravity field parameters derived from Galileo spacecraft encounters. The free obliquity values are not well c
by observations, but are presumed to be very small. The forced obliquity variations depend only on the orbital variations and the
precession rate parameters, which are quite well known. These variations are large enough to influence spatial and temporal patt
dissipation and tidal stress.
Published by Elsevier Inc.
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1. Introduction

The Galilean satellites of Jupiter exhibit considerable
idence of the influence of tidal dissipation. One conseque
of that process is that the spin poles of these bodies (Io,
ropa, Ganymede, and Callisto) are nearly coincident w
their respective orbit normals. In fact, most previous an
ses have assumed these obliquities to be identically zero
objective of the present investigation is to continue an ex
ination into the question of the orientations of the spin po
of Galilean satellites, relative to their respective orbit pol

It is well known that the obliquities of these bodies a
small, and for many purposes it is quite adequate to t
them as zero. However, there are still incentives to ex
ine the situation further. First is that it is impossible for t
obliquities to be identically zero, or even constant. Sec
is that finite obliquities will change the spatial and tempo
pattern, and the total amount, of tidal dissipation and t
stress within these bodies. Ignoring these variations c
E-mail address: bbills@igpp.ucsd.edu.

0019-1035/$ – see front matter Published by Elsevier Inc.
doi:10.1016/j.icarus.2004.10.028
lead to incorrect models of several important geodyna
processes.

As will be demonstrated subsequently, it is impossible
the obliquities to be identically zero since the orbit po
are inclined to the equator plane of Jupiter and are prec
ing. If the obliquity were momentarily zero, the precessio
torque would vanish and the spin pole would be unabl
follow the orbit pole. Further, it is not even possible for t
obliquities to be constant since the orbit precession oc
at non-uniform rates. If the spin poles were able to prec
rapidly enough to track the motion of the orbit poles, then
obliquities could be quite small. However, the spin prec
sion rates of the Galilean satellites, other than Io, are s
compared to most of the rates associated with the orbit
cession, and the obliquity variations are expected to be c
parable to the variations in orbital inclination. These orb
inclinations to Jupiter’s equator plane are all quite small,
they are much larger than the obliquities which would
sult if tidal dissipation had driven the spin to a generaliz

Cassini state appropriate to a uniform precession of the orbit.

To the extent that the obliquities are non-zero, there will
be interesting consequences for the spatial and temporal pat-

http://www.elsevier.com/locate/icarus
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terns of tidal stress and tidal dissipation within the bod
If the obliquity and orbital eccentricity are both zero, th
the tide raising body will always be on the equator, and
fixed distance. If the orbital eccentricity is non-zero, th
the tidal amplitude will vary over the orbit, and the loc
tion of maximum tidal displacement will librate in longitud
If the obliquity is non-zero, then the sub-jovian point w
also librate in latitude, and the patterns of dissipation
stress from that motion will add to the contribution fro
longitudinal librations. The eccentric and oblique pattern
stress and dissipation will change relative phase as the
precesses. This will lead to temporal changes in the gl
average rate and spatial pattern of tidal stress and dis
tion.

The precession of the spin pole of a rotating body
be modeled by equating the rate of change of spin an
lar momentum to the applied gravitational torque. Fo
rapidly rotating body, this torque balance can be written
the form(Ward, 1973, 1992; Kinoshita, 1977; Bills, 199
Hilton, 1991)

(1)
dŝ

dt
= α

(1− e2)3/2
(n̂ · ŝ)(ŝ × n̂),

where ŝ and n̂ are unit vectors along the spin pole and
bit normal respectively,e is the orbital eccentricity, andα is
a scalar rate parameter which depends on the principal
ments of inertiaA < B < C, the spin rateσ , and the orbital
mean motionn, via

(2)α = 3

2

(
C − (A + B)/2

C

)
n2

σ
.

The situation for a synchronous rotator differs significan
if the orbital eccentricity and obliquity are large. Howev
as will be shown below, when the eccentricity and obliqu
are small enough, the rapid rotator and synchronous
tor forms of the precession equation converge. The Gali
satellites have small enough eccentricities and obliqu
that the trajectories of their spin pole motion are well r
resented by the equations above.

In order to examine the obliquity variations of these fo
satellites of Jupiter, we will need estimates of several qu
tities. First, we need estimates of the spin precession
parameterα for each of the bodies. Second, we need a mo
of how the orbit varies with time. Explicitly, we need repr
sentations of the long period variations in eccentricity a
orientation of the orbit normal. In order to obtain an expl
solution to the differential equation of spin precession,
need an initial condition on the spin pole. That would app
to be the most challenging part of the analysis, from an
servational perspective, in that present observations ar
sufficiently accurate. However, we will see that the spin p
trajectory can be written in a form which separates the
fluence of initial conditions from the forced response of

changing orbit. If dissipative effects are included, we obtain
a solution which has no long-term memory and thus does
not require any initial conditions. Finally, the obliquityε is
(2005) 233–247

t

-

-

t

obtained directly from the relationship

(3)cosε = n̂ · ŝ.
We can already anticipate that rapid variations in the o

normal will map directly into obliquity variations, since th
spin pole will not be able to respond quickly enough. C
versely, slow variations in the orbit pole will not contribu
to obliquity oscillations since the spin pole can follow the
The most interesting case is one in which the orbit pole
spin pole rates of precession are comparable, as it can
to resonant amplification of the spin pole motion. Our lin
solution for forced spin pole motion will make that reson
amplification effect quite clear.

The remainder of this paper is divided into 5 sections
Section2 we examine the torque balance for synchronou
rotating triaxial bodies, and develop approximations to
spin pole precession equation. In Section3 we estimate the
rate parametersα which specify how fast the spin poles
the Galilean satellites will respond to a unit torque. In S
tion 4 we explore solutions to the spin precession equa
for the Galilean satellites, for a generic orbital model.
Section5 we develop a series of simple analytic models
the secular orbital evolution of the Galilean satellites,
then adopt the published model ofLieske (1998)for further
analysis. In Section6 we briefly summarize the results an
discuss implications.

2. Precessional torque balance

In this section we will examine the influence of rotati
rate on spin pole precession. The most familiar form of
precessional torque balance, as represented in Eqs.(1) and
(2), is only strictly valid in the case of a rapid rotator. In th
situation, the solar gravitational torque can be averaged
the spin period, holding the orbital position fixed, and th
separately averaged over the orbit. For a resonant rot
departures from axial symmetry modify the torque balan
and this must be properly accounted for. We will see, h
ever, that the proper torque balance equation for the Gal
satellites can be written in a form which is quite similar
that for a rapid rotator.

The precession of the spin pole of a planet or satellit
modeled by equating the change in spin angular momen
to the applied torque. The instantaneous gravitational to
acting on a triaxial body, due to a distant point mass, ca
written in the form

(4)T = 3Gms

r3
(û × I · û)

in which G is the gravitational constant,ms is the source
mass,r is the distance from the rotator to the source,I is
the inertia tensor of the triaxial body, andû is a unit vector

oriented toward the source, as seen from the center of the
rotator. This formulation yields both short period torques,
which give rise to nutations and librations, and long period
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torques which cause the precession we are mainly intere
in. For recent discussions of the short period effects, seeWu
et al. (2001)andWilliams et al. (2001).

If the triaxial body and point source are in a binary
bit, and the torques are averaged over the rotation period
orbital period of the body, we can write the precession eq
tion in the form

(5)
dŝ

dt
= 3

2

(
n2

σ

)(
α∗(n̂ · ŝ) + β∗)(ŝ × n̂),

wheren̂ andŝ are unit vectors along the orbit pole and sp
pole, respectively,n andσ are the angular rates of mean o
bital motion and rotation of the triaxial body, andα∗ and
β∗ are functions of the orbital eccentricitye and the princi-
pal moments of inertia(A < B < C). The particular forms
taken by the dimensionless parametersα∗ andβ∗ depend on
the relative rates of rotational and orbital motion, a poin
which we will return momentarily.

Several features of this formulation deserve comm
All but the terms within the first set of parentheses are
mensionless. The direction of the precessional motio
dependent only on the two unit vectorsn̂ and ŝ, and is per-
pendicular to both of them, due to theŝ × n̂ term. The orbital
mean motionn is related to source strengthGms and orbital
semimajor axisa via Kepler’s third law

(6)a3n2 = Gms(1+ ν),

where the mass ratio is

(7)ν = m

ms

and m is the mass of the rotator. For small mass ra
(ν � 1) we can make the approximation

(8)
Gms

a3
= n2

which was employed in writing Eq.(5).
In averaging the torques, we need to write functions of

bital radiusr and orbital true anomalyf in terms of orbital
mean anomalyM , which varies linearly with time. A conve
nient format for such expansions was introduced byCayley
(1861). He tabulated expansion coefficients for functions
the form

(9)

(
r

a

)p

cos(qf ) =
∞∑

j=0

Cp,q
j [e]cos(jM),

(10)

(
r

a

)p

sin(qf ) =
∞∑

j=0

Sp,q
j [e]sin(jM),

wherep and q are integers, and the coefficientsCp,q
j and

Sp,q
j are functions of orbital eccentricitye. Explicitly, those

coefficients are given by the integrals

2π
(11)Cp,q
j [e] = 1

2π

∫
0

(
r

a

)p

cos(qf )cos(jM)dM,
obliquities 235

(12)Sp,q
j [e] = 1

2π

2π∫
0

(
r

a

)p

sin(qf )sin(jM)dM.

The evaluation of these integrals, though rather tedious
Cayley, is now readily implemented via recurrence relati
(Hughes, 1981; Vakhidov, 2001).

If the rotation angle of the axis of least inertia of the t
axial body is

(13)s = τ + bM,

whereτ is the angle, measured from the ascending nod
the orbit on the equator plane at periapse, andb is a half inte-
ger, then we will need three coefficients:C−3,0

0 [e], C−3,2b
2b [e],

andS−3,2b
2b [e]. The first of these has a simple closed-fo

expression

(14)C−3,0
0 [e] = (

1− e2)−3/2
.

The others are given in terms of Taylor series expansi
with different forms for each value of the spin–orbit rate
tio b.

The most familiar form of the precessional equation
that which is applicable to rapid rotators, such as Earth
Mars. In that case, the torques can be averaged over the
period, holding the orbital position fixed, and then separa
averaged over the orbital position angle. In that case the
mensionless parametersα∗ andβ∗ are given by

(15)α∗c = J2C−3,0
0 [e] = J2

(
1+ 3

2
e2 + · · ·

)
,

(16)β∗ = 0,

whereJ2 is the degree two zonal harmonic coefficient of
gravitational potential of the rotator, which is related to
principal moments(A,B,C), massm and mean radiusR of
the body via

(17)J2mR2 = C −
(

A + B

2

)
,

andc is the dimensionless polar moment of inertia

(18)c = C

mR2
.

For a synchronous rotator, in whichb = 1, the torque av-
eraging is still a simple calculation, but is somewhat m
tedious. After adjusting the phase angleτ so that the mean
torque about the spin axis vanishes (in order to maintain
chronous rotation), the result can be written as

(19)α∗c = J2C−3,0
0 [e] + C2,2C−3,2

2 [e],
(20)β∗c = −C2,2C−3,2

2 [e],
whereC2,2 is a harmonic coefficient of degree two and ord
two in the potential of the rotator, and is given by
(21)C2,2mR2 =
(

B − A

4

)
.
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Note that the rapid rotator has no term proportional to
difference in equatorial moments, as the spin averagin
equivalent to settingA = B. If we truncate the Cayley coe
ficient expansions at second degree in eccentricity, we
for the synchronous case

(22)α∗c = J2

(
1+ 3

2
e2

)
+ C2,2

(
1− 5

2
e2

)
,

(23)β∗c = −C2,2

(
1− 5

2
e2

)
.

If the obliquity is small enough that

(24)n̂ · ŝ � 1

then the precession formula can be written as

(25)
dŝ

dt
= 3

2

(
n2

σ

)
Q[e](ŝ × n̂)

with

(26)Q[e] = (α∗ + β∗).

We will see below that this small angle approximation is v
well justified for the Galilean satellites.

If the Taylor series expansion in orbital eccentricitye is
truncated at degree two, we can write

(27)
dŝ

dt
= (

α0 + α2e
2)(ŝ × n̂).

The rapid rotator version of this formula can be written w

(28)α0 = 3

2

(
J2

c

)(
n

σ

)
n,

(29)α2 = 9

4

(
J2

c

)(
n

σ

)
n = 3

2
α0.

The corresponding form for synchronous rotators, w
σ = n, is

(30)α0 = 3

2

(
J2

c

)
n,

(31)α2 = 9

4

(
J2

c

)
n.

We thus see that, keeping only terms of first order
obliquity and second order in eccentricity, the resonant
tator and rapid rotator versions of the precession equa
are virtually identical in form. Analyses of the dynam
cal evolution of the Moon or other resonant rotators i
low obliquity configurations(Ward, 1975a; Peale, 196
Jankowski et al., 1989; Gladman et al., 1996)are obligated
to consider the higher order terms, but for treatment of
present situation, this simpler form is quite adequate.

3. Spin precession rates
In this section we estimate the spin pole precession rate
parametersα for the Galilean satellites. The formula from
(2005) 233–247

which they are estimated was given above, in Eq.(1). It
depends on the orbital mean motionn, which is very well
known, and on the differenceC − (A + B)/2 between the
polar moment and the average of the two equatorial
ments of inertia, which are not nearly as well known. W
first comment on how the current the moment estimates w
obtained, and then produce estimates of the spin rate
meters, with corresponding error estimates.

The degree two component of the gravitational poten
of a satellite, at a point specified by radiusr , latitudeθ , and
longitudeφ, can be written in the form

Φ2 = GM

r3

(−J2P2,0[µ] + (C2,1 cosφ + S2,1 sinφ)P2,1[µ]
(32)+ (C2,2 cos2φ + S2,2 sin2φ)P2,2[µ]),

whereG is the gravitational constant,M is the mass of the
body, latitudinal position is parameterized by

(33)µ = sinθ

and Pl,m[µ] is an associated Legendre function of deg
l and orderm. Alternatively, the quadrupole component
the potential can be written, via MacCullagh’s formula,
the form

(34)Φ2 = 3

2

G

r3
(J − I ),

where the mean moment of inertia is

(35)I = A + B + C

3
and the moment of inertiaJ about an axis along the un
vectoru is

(36)J = ût ·
(

A 0 0
0 B 0
0 0 C

)
· û

and the unit vector itself is

(37)û(θ,φ) = {cosθ cosφ,cosθ sinφ,sinθ}t .
There are 5 spherical harmonic coefficients and 6 inde
dent terms in the inertia tensor.

Estimates of the degree two gravity fields of the Galile
satellites have been obtained from the perturbations e
rienced by the Galileo spacecraft during numerous c
encounters(Anderson et al., 1996a, 1996b, 1998a, 1998.
It is difficult to estimate the full degree two gravity fie
from these incomplete samples of the surface field, but
situation has been improved by the insight(Hubbard and An-
derson, 1978)that the expected degree two components
be dominated by tidal deformation and will have a relativ
simple spatial pattern.

The expected pattern is that the potential will be a
perposition of a linear response to the rotational poten
which is symmetric about the rotation axis, and a linear

sponse to the tidal potential, which is symmetric about the
mean satellite-primary line. As a result of this assumed sym-
metry, only two of the five spherical harmonic coefficients
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of degree two will be non-zero, and they will be linearly r
lated. That is, we expect to find

(38)J2 = 10

3
C2,2

and

(39)C2,2 = ks

4
q,

where ks is the proportionality constant, or secular Lo
number, andq is a parameter which characterizes the
ative strength of the rotational tendency for oblate mass
tribution versus the gravitational tendency toward spher
symmetry. For a body with massM , radiusR, and rotation
rateσ , that ratio is

(40)q = σ 2R3

GM
.

Using this template, the solution algorithm effectively
duces the gravity field to 2 unknown parameters, the t
mass of the satellite and the scale factorks for the degree
two pattern. Estimates of the polar moment of inertia
also obtained, under the assumption of hydrostatic bala
from the Darwin–Radau relation

(41)c ≡ C

MR2
= 2

3

(
1− 2

5

√
4− ks

1+ ks

)
.

For a homogeneous fluid body, the secular Love numb
ks = 3/2 and the normalized polar moment isc = 2/5.

In terms of the spherical harmonic coefficients of the
tential, we can now write the spin pole precession rate p
meter as

(42)α = 3

2

(
J2

c

)
n.

We note that this parameter is expected to be a rapidly
creasing function of distance from Jupiter. As written ab
it appears to have only a linear dependence on mean
tion n. However, if we combine the expected tidal values
the other parameters, we can rewrite it in the form

(43)α = 45

64

(
5+ 2δks

πGρ

)
n3,

where we have expressed the satellite mass in terms of r
R and mean densityρ, and have written the secular Lov
number in terms of departure from the homogeneous va
Ganymede 50.317608 127.4±2.7
Callisto 21.571071 32.7±0.8
obliquities 237

,

-

s

Written this way, the factor in parentheses will be nearly
same for all of the Galilean satellites, and the spin pole
cession rate will be proportional ton3, or from Kepler’s third
law, proportional toa−9/2. The rate of spin precession for th
close satellites will be much greater than for the distant o

Table 1contains values of the relevant input parame
and estimates of the resulting spin pole precession rate
rameters for each of the Galilean satellites. Note that
relative accuracy of the spin precession rate of Io is roug
0.5% and all the others are roughly 5%. This is due to
better relative accuracy of the gravity field parameters o
which is mainly a result of larger departures from spher
symmetry.

4. Spin response to orbit variations

In this section we explore the response of the spin p
of the Galilean satellites to generic variations in orbital
rameters. Specifically, we note that the orbital eccentric
are all quite small(e � 0.01) and that the spin pole evolutio
depends on eccentricity only via a term

(45)
(
1− e2)−3/2 = 1+ 3/2e2 + 5/8e4 + · · · .

We will thus ignore eccentricity in our further analysis. T
most important driver of spin pole evolution is the rate a
amplitude of variations in orientation of the orbit norm
The torque from Jupiter causes the spin poles of the Gali
satellites to precess about their instantaneous orbit norm
If the orbit normals were fixed in orientation, the spin po
trajectories would just be circular cones centered on the
spective orbit poles. However, as the orbit poles themse
precess, the spin pole trajectories become more convolu

For now, we consider generic variation in the orientat
of the orbit normal, and examine how the spin pole respo
The simplest approach to constructing spin pole traje
ries would appear to be direct numerical integration of
equations of motion. In that case, initial conditions wo
be required. However, since the present spin pole posit
of the Galilean satellites are not well determined, other t
to indicate that they nearly coincide with their respective
bit poles, this presents a challenge. If we were to pursue
numerical integration route, we would need to examine h
the derived trajectories varied as the initial conditions w

allowed to span a plausible range of values.

der
as
(44)ks = 3

2
+ δks.

More insight can be obtained by constructing a first or
analytic model for the spin precession. It will not yield

Table 1
Spin precession rate parameters

Body n (deg/day) J2 (10−6) C/MR2 α (deg/day)

Io 203.48895 1845.9±4.2 0.3769±0.0004 1.495±0.005
Europa 101.37472 435.5±8.2 0.346±0.002 (1.91±0.05)×10−1
0.311±0.003 (3.09±0.05)×10−2

0.355±0.004 (3.08±0.11)×10−3
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accurate a representation of the high frequency variation
could be obtained by numerical integration, but it does re
our requirement for precise initial conditions. Similar li
ear analyses of spin pole precession have been constr
previously, in the context of studying obliquity variations
the Earth(Miskovitch, 1931; Sharaf and Boudnikova, 196
Vernekar, 1972; Berger, 1976), Mars (Ward, 1973, 1992),
and Venus(Ward and deCampli, 1979; Yoder, 1979, 199
1997).

The first step in that process is to represent the unit
tors ŝ andn̂, which point along the spin pole and orbit po
in terms of complex scalarsS andN , by projecting each o
them onto the invariable plane. In the present context,
will be approximated by Jupiter’s equator plane. That is,
are ignoring the slow precession of Jupiter’s spin pole, s
it is much slower than the Galilean satellite precession ra
If we also ignore the variations in satellite orbital eccent
ity values, the governing equation for spin pole preces
can now be written in the simple linear form

(46)
dS

dt
= −iα(N − S).

If the orbit pole evolution is represented via the series

(47)N [t] =
∑
j

nj exp
[
i(fj t + γj )

]
then the corresponding solution for the spin pole can be w
ten simply as

(48)S[t] = Sfree+ Sforced,

where the free pole motion, which depends only on the in
condition is

(49)Sfree= S[0]exp(iαt)

and the forced motion is

(50)Sforced=
∑
j

sj
[
exp[ifj t] − exp[iαt]]exp[iγj ]

with amplitudes given by

(51)sj =
(

α

α + fj

)
nj .

Each term in the series describing the orbit pole has a
responding term in the forced spin pole series. The spin
parameterα is positive, and all of the orbit pole ratesfj are
negative. If one of the sumsα + fj is close to zero, then th
corresponding amplitude in the spin trajectory will be a
plified.

Dissipation can be easily introduced by simply mak
the spin precession parameter complex:α → α + iβ. When
included this way, the dissipation completely damps
free term and somewhat modifies the forced terms. Ass
ing that the damping term is small, the resulting model
damped forced spin evolution takes the form
(52)S[t] =
∑
j

sj
(
exp[ifj t]

)
exp[iγj ].
(2005) 233–247

d

The second of the terms in square brackets in the orig
equation for forced response is removed by dissipation
obtain this expression, we allow a finite value ofβ, take the
limit as t → ∞, and then setβ back to zero. It is evident tha
the orbit pole and spin pole trajectories are characterize
identical frequencies and phases, but different amplitude

This solution can be viewed as a rough generaliza
of the Cassini state for the case of non-uniform orbit p
cession. In the case of a single orbit precession freque
the expected end-state for dissipative spin evolution is a
cial situation in which the obliquity has adjusted to a va
at which the system maintains a constant relative geo
try. That is, the spin pole and orbit pole remain co-pla
with the invariable pole as the spin pole precesses a
the orbit pole and the orbit pole precesses about the
variable pole(Colombo, 1966; Peale, 1969; Ward, 1975
Henrard and Murigande, 1987).

If the orbit pole precession is not steady, no such copla
configuration is attainable. However, the motions of the o
and spin poles can achieve a mode-by-mode equivale
the Cassini state. The solution above is such that each m
of the orbit pole precession, with amplitudenj , ratefj , and
phaseγj , has a corresponding mode of spin pole preces
with rate and phase identical to the orbit mode values,
with an amplitude proportional to the orbit amplitude. T
constant of proportionality is just the ratioα/(α +fj ) of the
spin precession rate to the relative spin–orbit precession

Since the series representing the orbit pole and spin
are similar in form, it is not surprising that angular separa
between spin pole and orbit pole has a simple expressio

(53)�S[t] ≡ S[t] − N [t] =
∑
j

�sj exp
[
i(fj t + γj )

]
.

The amplitude of each term is just the difference in am
tudes of the spin and orbit solutions:

(54)�sj = sj − nj =
(

α

α + fj

− 1

)
nj =

( −fj

α + fj

)
nj .

The magnitude of the phasor generated this way is the o
uity. It has the same frequencies as the orbital inclinat
but different amplitudes.

The spectral admittance, or ratio of obliquity to inclin
tion, at frequencyf is just

(55)
�s

n
= −f

α + f
.

Written this way, it is clear that if any of the forcing freque
cies are close to−α, the corresponding obliquity amplitud
will be large due to resonant amplification. It incorrec
implies an infinite response at the resonant frequency
properly model the behavior in the immediate vicinity
the resonance a finite dissipation term needs to be reta
However, it will emerge that the present configuration of

Galilean satellites is such that none of the orbital periods are
close enough to the spin precession periods to cause any dif-
ficulties with the linear theory.
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5. Secular orbit model

In this section we develop a simple model of the sec
variations in the orbital parameters of the Galilean satelli
In a previous section we saw that the spin pole preces
rate parameters range from 3× 10−3 to 1.5 degrees per day
This implies that any orbital variations which occur at su
stantially higher rates will not influence the spin pole a
will contribute directly to the obliquity variations. Our pr
mary interest here is in developing a simple orbital mo
which captures the essence of the variations which occu
time scales comparable to the spin precession rate, as
most significantly influence obliquity.

Mutual interactions between the satellites lead to v
high frequency perturbations in their orbits, with some rat
significant oscillations occurring with periods of only a fe
days(Musotto et al., 2002; Lieske, 1998; Sampson, 192.
These we will completely ignore. On time scales of seve
years, the distance and direction from Jupiter to the Sun
Saturn vary, and this will influence the satellite orbits.
very long time scales, the orbit of Jupiter varies and the eq
tor plane of Jupiter precesses. Both of these processe
important for a general model of the satellite orbits but w
be neglected in the present analysis, as they will contri
very little to obliquity variations.

The orbital motion of an isolated pair of spherically sy
metric bodies is very simple. Each of them follows a Ke
lerian ellipse about their center of mass, and the trajecto
can be described by 6 parameters:{a, e, I,Ω,�,M}, with
5 of them constant, and one of them(M) changing at a con
stant rate. In this notation,a is the semimajor axis,e is the
eccentricity,I is the inclination,Ω is the longitude of the
node,� is the longitude of periapse, andM is the mean
anomaly. The situation for the Galilean satellites is mu
more complex. Each of them receives perturbations from
non-spherical mass distribution of Jupiter, the presenc
the other satellites, and the distant effects from the Sun
other planets. Even in a perturbed orbit, we can still rep
sent the instantaneous position and velocity in terms of t
orbital elements, but rather than have 5 of them constan
of them will vary somewhat. We seek orbital models wh
represent variations in the orbital parameter pairs{e,� } and
{I,Ω} which take place on time scales long compared to
unperturbed orbital period.

In order to develop an accurate model of the slow
bital variations, we would need to consider 4 primary c
tributions. First is the contribution from the oblate figure
Jupiter. Second is the secular interactions between the o
in which each body is replaced by a hoop of mass obta
via the time averaged position of the unperturbed orbital
tion. Third is the influence of solar torques. Fourth is
resonant interaction between the pairs of satellites. T

are 2:1 mean motion resonances between Io–Europa, an
Europa–Ganymede, and a 7:3 mean motion resonance be
tween Ganymede and Callisto.
obliquities 239

e

e

,

Table 2
Jupiter’s contribution to nodal and apsidal rates

Body a (km) d�/dt (deg/day) dΩ/dt (deg/day)

Io 421761 1.4626× 10−1 −1.4336× 10−1

Europa 671044 2.8783× 10−2 −2.8213× 10−2

Ganymede 1070370 5.6151× 10−3 −5.5039× 10−3

Callisto 1882600 7.7815× 10−4 −7.6274× 10−4

5.1. Jupiter oblateness

The influence of the oblate figure of Jupiter on the orb
of the satellites is quite simple to model. If we consider
first two even zonal harmonics of Jupiter,J2 andJ4, their
contribution to orbital evolution can be approximated by
expressions(Greenberg, 1981)

(56)
d�

dt
= +n

(
3

2
J2ζ

−2 −
(

9

8
J 2

2 + 15

4
J4

)
ζ−4

)
,

(57)
dΩ

dt
= −n

(
3

2
J2ζ

−2 −
(

27

8
J 2

2 + 15

4
J4

)
ζ−4

)
,

where

(58)ζ = a

Rj

is the orbital semimajor axis normalized by the radius
Jupiter. The nodal lines of the orbits regress(dΩ/dt < 0)

and the apsidal lines advance(d�/dt < 0). The rates are
very similar, but the nodal and apsidal motions are in op
site directions. At this level of approximation, all the oth
orbital elements remain unchanged. As estimates for
zonal coefficients and radius of Jupiter, we use the va
(Lieske, 1998)

Rj = 71420 km,

J2 = 1.48485× 10−2,

(59)J4 = −8.107× 10−4.

Note that, in this situation, the mean motionn and semimajor
axisa are no longer functions only of the Jupiter monop
moment, via Kepler’s third law. Instead, they are related

(60)n2 = 1

a

∂ΦJ

∂r
= GmJ

a3

(
1+ 3

2
J2ζ

−2 − 15

8
J4ζ

−4
)

,

whereΦJ is the gravitational potential of Jupiter. This mak
relatively small changes in the semimajor axes. It amoun
of a few parts in 104 at Io and parts in 105 for the others.

The resulting apsidal and nodal rates, due to the figur
Jupiter alone, are listed inTable 2. If the oblateness contri
butions were dominant, then the satellite orbits would p
cess at uniform rates, and it would be reasonable to ex
the satellite spin poles to have been driven to Cassini s
(Colombo, 1966; Peale, 1969; Ward, 1975b), which means
that they would precess about their respective orbit pole

d
-
such a way as to remain coplanar with the orbit pole and the
spin pole of Jupiter. That was the basic assumption of the
analysis byBills and Ray (2000). However, as we will see
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in the next section, mutual perturbations between pair
satellites make the orbital motions rather unsteady.

5.2. Mutual orbit perturbations

In this section we consider the secular orbital pertur
tions due to pair-wise interactions between the satellites
the secular variation analysis, the satellites are no lo
treated as isolated point masses, but are instead ave
over their unperturbed orbital trajectories. We thus cons
the response of gravitating and rotating mass hoops to
respective torques. In order to obtain a representation o
coupled behavior of this system, we first write a set of diff
ential equations which reflect the perturbations each sate
experiences from its neighbors, and then solve this sys
of equations.

It would, of course, be possible to obtain solutions
numerical integration of the averaged equations of mot
However, it is much more instructive to obtain a simple a
lytic solution. If the perturbations are restricted to pair-w
interactions, and the expansion is limited to first order te
in the masses of the perturbing bodies, it is quite simpl
obtain a solution in which the eccentricity and inclinati
oscillations are decoupled. In that solution, we will estim
the normal modes of oscillation of the coupled perturbatio
There will be as many modes in the solution as there
satellites. The frequencies of oscillation depend only on
masses and semimajor axes of the interacting bodies.
amplitudes and phases of the oscillations are set by the
tial conditions.

It will be convenient to use a new set of variables to
scribe the orbits. For each satellitej , we define:

hj = ej sin�j,

(61)kj = ej cos�j,

and

pj = Ij sinΩj,

(62)qj = Ij cosΩj .

In terms of these variables, the secular part of the distur
function can be written as(Dermott and Nicholson, 1986
Murray and Dermott, 1999)

(63)Rj = nja
2
j (Aj +Bj ),

whereA andB are separate matrices which account for
eccentricity and inclination effects, respectively. They h
explicit forms

(64)Aj = 1

2
Ajj

(
h2

j + k2
j

) + Ajk(hjhk + kj kk),

(65)Bj = 1

2
Bjj

(
p2

j + q2
j

) + Bjk(pjpk + qjqk)

and the individual matrix elements are
(66)Ajj = +nj

4

∑
k �=j

mk

mc + mj

σjkτjkb[3/2,1;σjk],
(2005) 233–247

d

(67)Ajk = −nj

4

mk

mc + mj

σjkτjkb[3/2,2;σjk],

and

(68)Bjj = −nj

4

∑
k �=j

mk

mc + mj

σjkτjkb[3/2,1;σjk],

(69)Bjk = +nj

4

mk

mc + mj

σjkτjkb[3/2,2;σjk],

where the masses of the satellites aremj and the mass o
the central body ismc. The ratios of the semimajor axes a
expressed via(Dermott and Nicholson, 1986)

(70)σjk =
{

ak/aj if aj > ak,

aj /ak otherwise,

and

(71)τjk =
{

1 if aj > ak,

aj /ak otherwise.

The Laplace coefficients are defined by the relationship

(72)
1

2
b[s, r;x] = 1

2π

2π∫
0

cosrφ

(1− 2x cosφ + x2)s
dφ,

wheres is a half integer.
In terms of the disturbing functionRj , the perturbation

equations for satellitej can be written as

(73)
dhj

dt
= + 1

nja
2
j

∂Rj

∂kj

,
dhj

dt
= − 1

nja
2
j

∂Rj

∂hj

,

(74)
dpj

dt
= + 1

nja
2
j

∂Rj

∂qj

,
dqj

dt
= − 1

nja
2
j

∂Rj

∂pj

.

The solutions to these differential equations are readily
tained as a superposition of normal modes

hj (t) =
4∑

i=1

eji sin(gi t + γi),

(75)kj (t) =
4∑

i=1

eji cos(gi t + γi),

and

pj (t) =
4∑

i=1

nji sin(fi t + ϕi),

(76)qj (t) =
4∑

i=1

nji cos(fi t + ϕi).

As written here, the indexj identifies the satellite and th
indexi corresponds to the mode of oscillation. The frequ
cies gi and fi are eigenvalues of the matricesA and B,
respectively. Likewise, the amplitudeseji andnji are cor-

responding eigenvectors. The phasesγi andϕi , and suitable
scaling of the eigenvectors are all determined from the initial
conditions.
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Table 3
Orbital frequencies without oblateness

Mode fi (deg/day) gi (deg/day)

1 −9.396× 10−3 8.725× 10−3

2 −3.365× 10−3 3.156× 10−3

3 −1.335× 10−3 1.584× 10−3

4 0 6.298× 10−4

Table 4
Orbital frequencies with oblateness

Mode fi (deg/day) gi (deg/day)

1 −1.34001× 10−1 1.34043× 10−1

2 −3.31993× 10−2 3.31784× 10−2

3 −6.93302× 10−3 6.94117× 10−3

4 −1.56144× 10−3 1.62174× 10−3

Table 3lists the eigenvalues for the Galilean satellite s
tem secular variation model.

Note that in this solution, as in the case of oblateness
turbations alone, the nodal lines regress(fi � 0) and the
apsidal lines advance(gi > 0). However, for the inclination
solution, one of the frequencies is zero. This correspond
the fact that, in the absence of oblateness effects from
central body, there is a degeneracy in that the choice
reference plane for the orbital inclinations is arbitrary.

Comparing these rates with those from the oblate
ure of Jupiter, is it clear that the oblateness effect can
be ignored. It is a simple matter to include the secu
effects of an oblate primary and the mutual orbital p
turbations of the satellites. In fact, all that is required
adding some extra terms to the diagonals of the matriceA
andB. The extra terms are(Dermott and Nicholson, 1986
Malhotra et al., 1989; Murray and Dermott, 1999)

(77)�Aj = +1

2
n2

j a
2
j

(
3

2
J2ζ

−2
j −

(
9

8
J 2

2 + 15

4
J4

)
ζ−4
j

)
e2
j ,

(78)

�Bj = −1

2
n2

j a
2
j

(
3

2
J2ζ

−2
j −

(
27

8
J 2

2 + 15

4
J4

)
ζ−4
j

)
× sin2 Ij .

With those additions, the orbital frequencies are quite dif
ent, as may be seen inTable 4.

Note that the modal frequencies are now close to the a
dal and nodal precession rates computed initially for the
satellites, using the oblateness of Jupiter alone. Howe
these are not individual satellite responses, but frequen
of the coupled modes of oscillation of the entire syste
Note also that the oblateness of Jupiter has removed
degeneracy of the inclination system, as there is now a
ferred orientation of the orbit planes.

5.3. Solar torques
In this section we consider the influence of solar torques
on the orbital motions of the Galilean satellite system. The
obliquities 241

solar torque is a relatively small perturbation to the effe
already considered, but it is easy to incorporate. In the s
of secular perturbation analysis, we consider the Sun to
nearly circular ring of mass lying in Jupiter’s orbit plane. It
thus equidistant from each of the satellites, on average,
is nearly, but not quite, in the reference equatorial plane.
secular effect of the solar torque is thus very similar to t
of the oblate figure of Jupiter, but with two minor chang
The main similarity is that both torques cause the sate
orbit nodal lines to regress and apsidal lines to adva
The differences are related to the distance and directio
the source of torque. The average distance to the Sun i
same for all the satellites, so that the solar effect on eac
them is rather similar, in marked contrast to the influenc
Jupiter’s oblate figure. The solar torque, acting alone, wo
make the satellite orbit poles precess about Jupiter’s o
pole, whereas the oblate figure of Jupiter would make th
precess about Jupiter’s spin pole.

On very long time scales (�104 years), the eccentricit
and inclination of Jupiter’s orbit both change due to int
action with the other planets. On even longer time sca
the orientation of Jupiter’s spin pole also changes due to
lar torques. In that process, the solar torques on the sat
orbits play an important role, as they provide a long le
arm for the solar torque, and they are quite firmly coup
to the equator of Jupiter. We will ignore those long per
effects, and use the present values of obliquity and ec
tricity. However, it is worth noting that changes in tho
parameters will influence the satellite orbits and spin tra
tories on very long time scales.

In the absence of other effects, the solar torques wo
make the orbit planes precess at rates which are given b

(79)
dΩi

dt
= H

ni

with

(80)H = 3

4

(
GMs

b3
J

)
cosεJ = 5.1958× 10−3 (deg/day)2,

whereMs is the solar mass,εJ is Jupiter’s obliquity, and the
semiminor axisbJ of Jupiter’s heliocentric orbit is related t
the eccentricitye and semimajor axisa via

(81)b2 = a2(1− e2).
The nodal rate contributions, computed this way, for the G
ilean satellites are {−33.45,−67.16,−135.3, and−315.6}
arcsec/year, for Io, Europa, Ganymede, and Callisto, resp
tively. The corresponding apsidal rate contributions from
lar torques have the same magnitude but opposite sign

(82)
d�i

dt
= −dΩi

dt
.

To properly include these effects, we add the solar tor
contributions to the diagonals of the matricesA andB, in

much the same way as the oblateness effect of Jupiter was
dealt with. The resulting nodal and apsidal rates are listed in
Table 5.
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Table 5
Orbital frequencies with solar torque

Mode fi (deg/day) gi (deg/day)

1 −1.34029× 10−1 1.34071× 10−1

2 −3.32623× 10−2 3.32413× 10−2

3 −7.04153× 10−3 7.04831× 10−3

4 −1.79897× 10−3 1.86081× 10−3

5.4. Resonant interactions

In this section we briefly consider the influence of me
motion resonances in the Galilean satellite system on
orbital motion. Resonances can profoundly influence the
namics of orbital systems, and the Galilean satellites are
best known example of such a situation. Despite that
cumstance, we will argue that the mean motion resonan
important as they are for understanding the variations of
centricity and periapse, can be ignored in developing a
ple representation of the inclinations and nodes.

The mean motions of the inner three Galilean satell
very nearly correspond to successive ratios of 2:1. The a
values are

n1 − 2n2 = 0.739506 deg/day,

(83)n2 − 2n3 = 0.739506 deg/day,

or

(84)(n1 − 2n2) − (n2 − 2n3) = n1 − 3n2 + 2n3 = 0.

The corresponding mean longitudes satisfy the relation
(Lieske, 1998)

(85)λ1 − 3λ2 − 2λ3 = 180◦ + 0.064◦ sin

(
t − t0

2071 day

)
.

That is, the mean value is 180◦ and the angle librates with
small amplitude and rather long period. The small amplit
of libration is clearly related to tidal dissipation in the syst
(Peale et al., 1979; Yoder and Peale, 1981; Malhotra, 1
though exactly how the dissipation in Jupiter is balan
against dissipation in the satellites remains controve
(Greenberg, 1987; Goldstein and Jacobs, 1995; Aksnes
Franklin, 2001; Ioannou and Lindzen, 1993a, 1993b, 19
Peale and Lee, 2002).

In addition, there is also a near resonance betw
Ganymede and Callisto(Lieske, 1973)

3n3 − 7n4 = −0.04467 deg/day.

Though this is a fourth order resonance, the commensur
ity is close enough that it too has significant influence on
orbits.

A proper treatment of the secular dynamics of a sys
with resonances is rather complicated. The averaging
volved in the standard derivation of the secular disturb

function explicitly assumes that the orbital mean motions are
not commensurate. Several recent analyses have considere
the influence of near commensurabilities in mean motion
(2005) 233–247

,

l

d

Table 6
Orbital frequencies fromLieske (1998)

Mode fi (deg/day) gi (deg/day)

1 −1.32806× 10−1 1.61023× 10−1

2 −3.26154× 10−2 4.64564× 10−2

3 −7.17678× 10−3 7.12408× 10−3

4 −1.76018× 10−3 1.83939× 10−3

on the secular system (Malhotra et al., 1989; Apostolos and
Dermott, 1997, 1999). The primary effect is a change in
frequencies of the apsidal oscillations. Since our primary
jective, at present, is to obtain a simple representation o
motions of the orbit pole, at frequencies which will influen
the satellite spin poles, we can safely neglect these reso
effects.

One way to assess the error incurred by our neglec
resonances is to compare the current orbit model wi
model which does include resonances. The most acc
analytic model of the Galilean satellite system, at pres
is that of Lieske (1998). It is based on the extensive d
velopment bySampson (1921), and includes a very wid
range of time scales, including perturbations from the
and Saturn, precession of the Jupiter equator plane.Table 6
lists the frequencies from Lieske’s model that corresp
to the secular analysis developed above. A comparison
tween them and the values listed inTable 5reveals that the
inclination frequenciesfj are quite close, but that the ecce
tricity frequenciesgj in the two models are rather differen
with Lieske’s values consistently larger.

5.5. Synthetic secular model

In this section we abandon our attempt to develop a
ular variation model ab initio, and simply extract the lo
frequency components from an existing analytic model
the previous several sections we have made successiv
proximations to the actual behavior of the Galilean sate
system, and have achieved fair agreement with establi
theories, at least in terms of the inclinations and nodes.
performance of the eccentricities and periapses is appr
bly worse. As the spin pole behavior depends more stro
on the parameterI andΩ than one and� , it might appear
that we are close to success in that regard. However, th
fort required to include the resonant terms, and thereby
full agreement, is not warranted at present.

The primary objective of the current effort is to exami
the behavior of the spin poles of these bodies, and an
curate orbital model already exists. We will simply extra
the low frequency part of the Galilean satellite ephemeri
Lieske (1998), with constants due toArlot (1982), as given
by Rohde and Sinclair (1992). That process is not quite a
simple as it might sound, for at least two reasons. Firs
that Lieske, following the earlier work ofSampson (1921),
d
represents the orbits in a cylindrical coordinate system, and
what we require are amplitudes, frequencies and phases for
a Poisson series representation of the slow variations in the
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Fig. 1. (a) Inclination spectrum for Io. (b) Inclination spectrum for Eu

Keplerian element pairs(I,Ω) and (e,�). Second is tha
the analytic formulation of Lieske’s model involves not ju
trigonometric functions of time, but trigonometric functio
of trigonometric functions of time.

The approach we use is similar to that employed
Carpino et al. (1987), Nobili et al. (1989)in extracting syn-
thetic secular variation models from the results of numer
integration. The first step is to generate a list of Cartes
state vectors(x, y, z;dx/dt, dy/dt, dz/dt) for each satel-
lite from Lieske’s model. We used a time span of 6000 ye
centered on the epoch of the ephemeris(JD= 3443000.5),
with 0.25 year sampling. Next, each of these Cartesian s
vectors is converted to a corresponding list of osculating
plerian elements{a,M,e,�, I,Ω}. Finally, we estimate the
amplitudes corresponding to each of the fundamental
quencies in a Poisson series representations of the co
nates{h, k} and{p,q}.

In a linear secular variation theory, there are as many
quencies as satellites. In higher order theories, many m
frequencies appear. What had appeared to be isolated
tral lines, in the lowest order theory, now emerge as de
forests of multiply split lines. However, most of the sid
band spacings are expected to be low order integer li
combinations of the frequencies which emerge in the lin

theory.

Figure 1illustrates the inclination spectra of the Galilean
satellites, as depicted in the model ofLieske (1998). For
(c) Inclination spectrum for Ganymede. (d) Inclination spectrum for Callisto.

-

-

each of the bodies, the dominant line in the inclination sp
trum is at the corresponding secular frequencyfj . Some of
the other important lines are also at secular frequencies
many of them correspond to general terms in the disturb
function. The inclination spectra are very nearly symme
in frequency about the dominant line.

Figure 2illustrates the obliquity spectra of the Galile
satellites, obtained from the inclination spectra via the lin
mapping of Eq.(54). In contrast to the inclination spec
tra, which are quite symmetric, the obliquity spectra exh
larger amplitudes near the frequency at which resonant
plification occurs.

Figure 3shows time series of the variations in the sca
quantitiesI andε, for each of the satellites. The time spa
illustrated are different for each satellite since the domin
frequencies decrease with increasing distance from Jup
Note that for Io and Europa, the obliquity values are con
erably smaller than the inclination values. In both of th
cases, the inclinations are nearly constant ((4.1 ± 0.73) ×
10−2 degree for Io, and(4.68± 0.23)× 10−1 degree for Eu-
ropa) and the spin pole precession rate parameterα is large
enough that the spin pole can easily keep pace with mo
the motions of the orbit pole. As as a result, the obliqu
values are small and nearly constant ((4.05± 0.76) × 10−3

−2
degree for Io, and(9.65± 0.69) × 10 degree for Europa).
For Ganymede and Callisto, the situation is somewhat

more complex. For Ganymede, the range of inclination val-
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(a) (b)

(c) (d)

Fig. 2. (a) Obliquity spectrum for Io. (b) Obliquity spectrum for Europa. (c) Obliquity spectrum for Ganymede. (d) Obliquity spectrum for Callis

(a) (b)
(c) (d)

Fig. 3. (a) Obliquity time series for Io. (b) Obliquity time series for Europa. (c) Obliquity time series for Ganymede. (d) Obliquity time series for Callisto.
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Fig. 4. (a) High resolution obliquity spectrum for Europa. (b) High res
Callisto.

ues is quite large(2.04±0.74)×10−1 degree and the obliq
uity values cover nearly an equal span(1.55± 0.65) × 10−1

degree, though with higher mean frequency of oscillat
in obliquity than in inclination. The most extreme case
Callisto, where the inclination oscillates from 0.15◦ to 0.70◦
with a 580 year period, and the obliquity spans a range
times as large, with the same dominant period.

Figure 4illustrates the asymmetry of the obliquity spe
tra of Europa, Ganymede, and Callisto, by focusing o
lower frequency range than is easily resolved inFig. 2. For Io
and Europa, the largest amplitude obliquity variation occ
at the same frequency as the largest amplitude inclina
variation. However, for Ganymede and Callisto, the larg
obliquity effect arises from resonant amplification of sma
terms in the inclination series.

6. Discussion

We have developed a simple model for the orbital a
rotational precession trajectories of the Galilean satell
and have shown that the forced obliquities of these b
ies are non-zero. In fact, for all of these bodies, the for

obliquities are non-negligible in comparison to the forced
eccentricity and inclination variations. For Io and Europa,
due to their proximity to Jupiter, the spin pole precession
n obliquity spectrum for Ganymede. (c) High resolution obliquity specrum for

rates are fast enough that the obliquity variations are ra
smaller than the inclination variations. For Ganymede
Callisto, the obliquity variations are actually comparable
the inclination variations.

We have deliberately used a very simple model of the
bital motion to illustrate the basic principles upon which
spin model is based. A better model of the spin pole m
tion could be rather easily produced by using a better m
of the orbital motion. In particular, use of numerically int
grated orbits, like that ofMusotto et al. (2002), appears very
promising. However, we anticipate that the basic conclus
would remain unchanged. That is, we expect that the fo
obliquity of Io will be small, and for the other bodies th
forced obliquities will be comparable to the orbital inclin
tion variations.

Our analysis essentially assumes that tidal dissipation
driven the free obliquities of all four bodies to vanishing
small values. Sufficiently accurate monitoring of the s
pole orientations could conceivably reveal departures f
this situation, as is the case for Venus(Yoder, 1997). In the
Galilean satellite case, a likely source of excitation of f
obliquities would be impacts of comets or asteroids(Peale,
1975, 1976).
Perhaps the most significant implication of our analysis
is that it reveals an additional source of tidal stress and dis-
sipation within the Galilean satellites. If the eccentricity and



s 175

the
ec-
ld-
ting.
e.
nal
uc-
The
rent

rom

sults

.B.,
ede.

Sjo-
to.

Sjo-
ces

the

ars.

ys.

ys.

a-
tron.

ry of

896.
nus.

ous

elera

lanet

reso-

45–

nd

ts of

elest

plan-
265.

. At-
424,

and

15,

r 2

hys.

rfac-

er-
stro-

s de

idge

ula-

nd
10,

.
Moon.

nd li-

tion

sipa-

llites.
mi-

em.

f the
st.

oeffi-

ra-

ci-

189,

So-

Ki-
ars.

ole.

01.
hys.

.F.,
dy-
246 B.G. Bills / Icaru

obliquity were both zero, the tides raised by Jupiter on
satellites would be large but stationary. A finite orbital
centricity causes the tidal bulge to librate in longitude, yie
ing time dependent stress and potentially significant hea
A finite obliquity causes the tidal bulge to librate in latitud
The global average rates of tidal heating from longitudi
and latitudinal librations both depend on the internal str
ture of the body, and do so in exactly the same way.
spatial patterns of heating from these sources are diffe
and the rates scale withe2 and sin2 ε, respectively.
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