High resolution 2-D fluorescence imaging of gas transfer

C. Kräuter^{1),2)}, D. Trofimova ^{1),2)}, L. Nagel^{1),2)}, and B. Jähne^{1),2)}

- 1) Institute of Environmental Physics, University of Heidelberg, Germany
- 2) Heidelberg Collaboratory for Image Processing, Univ. Heidelberg, Germany

for Image Processing

Fig 1: Schematic steady state concentration profiles in air and water over depth.

Transformation of a concentration gradient into a gradient in pH/fluorescence [1]:

- Invasion of ammonia (alkaline tracer) from air to water:
 - \rightarrow Solved and dissociated in slightly acid water (pH = 4)

$$NH_3 + H_3O^+ \longrightarrow NH_4^+ + H_2O$$

- → Equal opposite fluxes of hydrogen and ammonium
- Increase of air side ammonia concentration:
 - →pH value reaches 7 at the surface
 - → Formation of an alkaline layer

Universität

HEIDELBERG

Zukunft. Seit 1386.

→ Visualization by a fluorescent pH indicator

Experimental set-up

Fig 2: Sketch of the set-up containing a sCMOS camera and blue high power LEDs.

Wind-wave tank:

- Length ≈ 4 m
- Width ≈ 1 m
- Depth ≈ 3 cm
- Water volume ≈ 22 l
- Air volume ≈ 300 l

Optical set-up:

- 50 blue high-power LEDs
- high-resolution (o.1 mm), high-speed (100 ms) sCMOS camera

Components 8.0 an wavelength [nm]

Fig 3: Absorption and emission spectra of Pyranine and filtered LED spectra and camera sensitivity window.

- Indicator (Pyranine [2]):
- \rightarrow pH dependent fluorescent dye with pK_s \approx 7.3
- Light source (wavelength ≈ 430- 540 nm) and Fluorescence:
 - → To reduce acid fluorescence; filtered below 440 nm
 - → To reduce direct reflections; filtered above 490 nm and camera sensitivity range is filtered by an additional band pass filter

Simulations $-I_{tot} = 10^{-7} \text{ mol/I}$ ਓ 0.04 depth 90.0 0.2 --- NH_{3.s} = 1.0e–4 mol/l --- NH_{3 s} = 1.5e–4 mol/l 0.25 --- NH_{3 s} = 2.5e–4 mol/l $-NH_{3s} = 4.0e-4 \text{ mol/l}$ $-NH_{3.5} = 6.0e-4 \text{ mol/l}$ intensity [au] intensity [au]

Fig 4: Simulated depth profiles of the normalized intensity for different concentrations (a) $NH_{3,s} = 2.5e-4 \text{ mol/l}$, (b) $I_{tot} = 10e-6 \text{ mol/l}$ and (a,b) $pH_{start} = 4.5e-4 \text{ mol/l}$

- Numerical simulation using autoprotolysis, mass and charge conservation
- Depth profiles are simulated with the surface renewal model [3] → To find best concentration of indicator, ammonia and starting pH value

Preliminary results

Fig 5: Image of the water surface (4×7 cm) showing two dimensional horizontal structures of the mass boundary layer thickness in false color at a wind speed of 1.5 m/s (left) and 5.5 m/s (right).

Fig 6: Simultaneous and collocated gas (left) and heat (right) visualization at 3.5 m/s.

- First test measurements conducted at a small linear wind-wave facility at different wind speeds
- Only fluorescence from the surface layer is visible
- → technique is applicable to wind-wave tanks
- Simultaneous and collocated measurements of heat and gas exchange
 - → same structures, maybe sharper due to lower diffusivity of heat or better resolution of sCMOS camera

Outlook

Controlled change of the thickness of the alkaline layer to investigate the depth dependence of turbulent eddies

Fig 7: Set-up at large wind-wave facility, Aeolotron.

References: [1] Hiby, J. W. et al. (1967). Eine Fluoreszenzmethode zur Untersuchung des Stoffübergangs bei der Gasabsorption im Rieselfilm, Chemie-Ing.-Techn., 39, pp. 297-301

- [2] Wolfbeis, O. S. et al. (1983). Fluorimetric Analysis, Fresenius Z Anal. Chem., 314, pp. 119-124
- [3] Jähne, B. et al. (1989). Investigating the transfer process across the free aqueous boundary layer by the controlled flux method, Tellus, 41B pp. 177-195

