
Invenio Mobile App

August 2014

Author:

Harry Cutts

Supervisor:

Jiří Kunčar

CERN openlab Summer Student Report 2014

CERN openlab Summer Student Report 2014

Project Specification

The aim of this openlab summer student project is to enhance mobile user experience for

Invenio digital library services. The project will use the Apache Cordova platform to

build native Android and iOS applications. The application itself will be built using

HTML5 and JavaScript technologies. An initial prototype of the application, targeting

mostly search functionality, is available. The selected student will enrich existing

functionality as well as address personal features related to tagging of resources or

notifications about new publications of interest. The project will include server-side

programming in Python to enrich REST API of the digital library platform.

CERN openlab Summer Student Report 2014

Abstract

In this project, a mobile application is developed for the Invenio digital library system,

using HTML5 with Apache Cordova. Alternative HTML5 technologies are compared and

decisions justified. The features of a prototype are reimplemented with a view to

improving performance, usability, and maintainability. OAuth2 authentication is

implemented, and further work proposed.

CERN openlab Summer Student Report 2014

Table of Contents

1 Introduction..6

2 Project Goals..6

3 Technologies..6

3.1 Apache Cordova and HTML5..6

3.2 CoffeeScript.. 7

3.3 Less.. 7

3.4 Grunt... 7

3.5 jQuery... 8

3.5.1 Zepto.js, a lightweight alternative..8

3.6 Bootstrap and Ratchet..8

4 Design..13

4.1 User Interface..13

4.1.1 Design objectives..13

4.1.2 UI Flow...13

4.1.3 Screen designs...13

4.2 Single page applications...13

4.3 Server API and connector architecture..14

5 Implementation..15

5.1 Directory structure and compilation process...15

5.1.1 Merges..16

5.2 Screens and state...16

5.2.1 Migrating to Ratchet..16

CERN openlab Summer Student Report 2014

5.3 Preventing Cross-Site Scripting..17

5.4 Storing files... 17

5.5 Storing records..18

5.6 The API and Imposter..18

5.7 Authentication..18

6 Conclusion...18

7 Further Work..19

7.1 API Implementation...19

7.2 Cache clearing..19

7.3 Testing on iOS... 19

7.4 Restricted records and tagging...20

7.5 Tablet support.. 20

 Appendix A: Invenio REST API..22

 Bibliography...25

CERN openlab Summer Student Report 2014

1 Introduction

Invenio is an open source Web service for managing digital libraries, used by many

organisations such as CERN and INSPIRE. Originally developed at CERN, it is now

developed by an international collaboration of research institutes.

A prototype mobile application had been developed by Yannick Tapparel, which allowed

Android and iOS users to search open Invenio document servers, view records and

download files for offline viewing.

This report documents a project to create a new mobile application for accessing Invenio

document servers.

2 Project Goals

The goals of the project are to replicate the prototype's features while improving usability

(by redesigning the user interface), security and maintainability. Authentication with

sources will be implemented, to allow access to restricted records.

An API for the application to communicate with will be designed and a “stub” Invenio

module will be written for it. Server-side implementation of the API is not within the

scope of the project.

3 Technologies

This section describes the technologies used in the project, and the reasons for their use.

All of the technologies used are open source.

3.1 Apache Cordova and HTML5

The prototype application was created using a “hybrid” approach, in which the

application is created using HTML5 and its associated technologies (CSS and

JavaScript), and runs in a native container which provides a standardised interface across

6 | P a g e

CERN openlab Summer Student Report 2014

platforms. This allows one implementation to be developed for a wide range of platforms,

instead of implementing the application multiple times.

Apache Cordova [1] is an open source hybrid application framework, originally created

by Nitobi as closed-source framework PhoneGap. In 2011 Nitobi was bought by Adobe

Systems, which donated the PhoneGap source code to the Apache Foundation, creating

Cordova [2]. PhoneGap is now a closed-source derivative of Cordova.

Cordova provides native containers for fifteen platforms, including Android, iOS, and

Windows Phone [1]. A developer of a Cordova application creates it using HTML5,

JavaScript, and a number of Cordova plugins which provide access to native APIs (such

as sensors and the file system). The Cordova build system is then used to package the

HTML5 application and the appropriate container into native applications for each

platform.

3.2 CoffeeScript

CoffeeScript [3] is a language for Web development which compiles to JavaScript. It has

a cleaner, more compact syntax (especially for loops), and prevents some programming

errors often made in JavaScript (for example, by providing local scope by default, and

preventing type coercion). It also provides a standardised class system, while retaining

complete compatibility with JavaScript.

3.3 Less

Less [4] is a preprocessor for CSS. It provides many features which are useful for

managing larger amounts of CSS, such as constants, mixins and nested rules. It is

completely compatible with CSS, so existing frameworks can still be used.

3.4 Grunt

While both CoffeeScript and Less files can be compiled at run-time, this considerably

increases the application's loading time. The common approach is to compile them

beforehand, using a build system such as Grunt [5]. Grunt allows a build process to be

defined in a JavaScript or CoffeeScript file, and has plug-ins for most common build

tasks, including compilation of CoffeeScript and Less, and compression of source files.

7 | P a g e

CERN openlab Summer Student Report 2014

3.5 jQuery

jQuery [6] is a JavaScript library which provides many useful functions, including for

HTML manipulation and AJAX. It has become a standard JavaScript library for Web

applications.

3.5.1 Zepto.js, a lightweight alternative

The main disadvantage of jQuery is its size (83.3kiB), which increases the loading time

of the application. Zepto.js [7] is a lightweight implementation of a subset of jQuery. If

Zepto.js implements a feature, its API for that feature will be identical to jQuery's.

Zepto.js is only 9.9kiB in size, significantly smaller than jQuery.

Unfortunately, Zepto.js is not completely compatible with Bootstrap 3 [8], and so was not

used. Since Bootstrap was later replaced with Ratchet, however, changing to Zepto.js

may be a possibility in future.

3.6 Bootstrap and Ratchet

Twitter Bootstrap [9] is a CSS framework designed for responsive Web sites and

applications. It provides many useful classes, for layout, menus, and widgets (such as

buttons, text boxes, and progress bars). It also includes an icon set.

Ratchet [10] is a CSS framework designed to mimic the look and feel of iOS or Android

(depending on which theme the developer chooses). It makes creating native-looking

hybrid applications quite simple, and provides a JavaScript library for creating single-

page applications. Support for tablet layouts is planned [11].

To begin with, Bootstrap was used to build the application's user interface, because it was

already being used by Invenio's Web interface. However, as the project progressed it

became clear that creating a native look and feel for both platforms with Bootstrap would

be a slow process. The user interface was modified to use Ratchet instead.

8 | P a g e

CERN openlab Summer Student Report 2014

9 | P a g e

Figure 1: A user interface flow diagram for the application. Boxes with

sharp corners are screens; rounded corners indicate screen parts (such as

tabs or dialogue boxes); dashed borders indicate screens in other

applications. Lines without arrows do not add to history (that is, they do not

change the location which the back button leads to).

Search tab
On Device

tab

Results
screen

Record
screen

Save to
device
dialog

File
viewer

app

Home screen

Web
browser

Manage
sources
screen

Touch a record

Touch an author
name or keyword

Search

Start
About
screen

Add source
screen

CERN openlab Summer Student Report 2014

10 | P a g e

Figure 2: The wireframe for the search tab of the home screen.

CERN openlab Summer Student Report 2014

11 | P a g e

Figure 3: The wireframe for the results screen.

CERN openlab Summer Student Report 2014

12 | P a g e

Figure 4: The wireframe for the record view screen.

CERN openlab Summer Student Report 2014

4 Design

4.1 User Interface

4.1.1 Design objectives

The objectives of the user interface design were to:

• minimise the number of touches required to perform simple tasks (for example,

finding a record through a search);

• only show the most pertinent information and options on each screen, to avoid

overwhelming the user;

• allow customisation of the interface by Invenio server administrators (for

example, to show additional or different fields in the search results);

• conform to platform guidelines or conventions where possible, especially

regarding navigation elements (such as tabs and back buttons).

4.1.2 UI Flow

A diagram showing the UI flow can be found in Figure 1. The application starts on the

search tab of the home screen.

4.1.3 Screen designs

Wireframes were created for the search tab of the home screen (Figure 2), the results

screen (Figure 3) and the record screen (Figure 4). Wireframes for these screens were

prioritised because they form the most important path through the application.

On all screens except the home screen, the icon in the top-left functions as a back button

on iOS devices, and has a suitable icon next to the source icon.

4.2 Single page applications

Traditionally, Web applications changed between views by loading new HTML pages.

These HTML pages had many elements in common, such as navigation bars, stylesheets

and JavaScript libraries, which had to be defined and loaded for every HTML page. This

13 | P a g e

CERN openlab Summer Student Report 2014

slowed down applications, and increased bandwidth usage (although this is not an issue

for Cordova applications).

Single page applications (SPAs) only load one complete HTML page, which includes the

main stylesheet, JavaScript libraries, and other common elements. This page contains a

content element. When the view changes, JavaScript is used to modify the content

element, sometimes by loading a partial HTML file. This method removes the slowdown

caused by reloading common elements, while also reducing code duplication.

As loading time was a major issue for the prototype application, the single page approach

was used, and performed well. In the new application, the same approach was chosen.

4.3 Server API and connector architecture

The prototype application retrieved data from the server by adding format templates to

Invenio's existing Web interface, and either displaying or parsing the HTML that was

returned.

There are a multiple problems with this solution. Parsing HTML is unnecessarily slow

and is not already implemented in JavaScript, resulting in unnecessary extra code.

However, this is minor compared to the security implications of displaying HTML from

the server without a sandbox. In the prototype, any JavaScript included in the record

HTML sent from the server would have been executed, in an environment where it had

access to the mobile device's file system. A compromised server could have compromised

all of the mobile devices connected to it via the application.

For this project, a RESTful server-side JSON API was designed. This API allows

applications to request records in JSON format, and make searches using the existing

Invenio search syntax. JSON was chosen because JavaScript has a built-in parser

implementation for it. For descriptions of the API calls, see Appendix A: Invenio REST

API (page 22).

On the client side, a connector class was created to manage API calls. Its interface was

designed so that other connector classes could be created for other source types, such as

arXiv.

14 | P a g e

CERN openlab Summer Student Report 2014

The application stores a list of sources added by the user. For each source, its name, URL,

and type is stored, along with a unique identifier in reverse domain name notation. The

source type indicates which connector class should be used. In this way, the application

can connect to multiple sources, possibly of multiple types, and new source types can be

added by implementing new connector classes.

5 Implementation

5.1 Directory structure and compilation process

Most code is stored in the www/ directory of the Cordova project. Within that directory,

index.html provides the “wrapper” document for the single-page application, and HTML

files in the pages/ directory define the different screens (see section 5.2, Screens and

state).

Stylesheets are written in Less, and stored in the less/ directory. Grunt compiles the

stylesheets into CSS files of the same name in the cssbin/ directory. If a stylesheet is

specific to a screen, it will have the same name as the screen's HTML file.

Similarly, code files are written in CoffeeScript, and stored in the coffee/ directory. The

compiled JavaScript files are placed in the jsbin/ directory. If a code file is specific to a

screen, it will have the same name.

For example, the Results screen is defined by the HTML file pages/results.html. Its

stylesheet is less/results.less, so it references the compiled version at

cssbin/results.css. It also requires styles from less/list.less, which are included by

an @import directive in less/results.less. Its CoffeeScript file is

coffee/results.coffee, which is compiled to jsbin/results.js. It also requires the

dropdown menu component defined in coffee/dropdown.coffee, so it also links to

jsbin/dropdown.js.

Connector classes are stored in coffee/connectors/, except for the

OfflineStoreConnector, which is included in coffee/offline-store.coffee.

15 | P a g e

CERN openlab Summer Student Report 2014

5.1.1 Merges

To adapt the application for other platforms, files can be placed in the appropriate

subdirectory of merges/. The Cordova build system will copy the files from the relevant

subdirectory when building the application for a particular platform. Platform-specific

files have not yet been created (see section 7.3, Testing on iOS).

5.2 Screens and state

The complete HTML page (index.html) imports libraries and a common stylesheet,

before loading the home page into its content element. The screens are stored as partial

HTML files, and may load their own view-specific stylesheets and scripts.

Each screen is addressed using the part of the URL after the hash (#). So, for example, the

About screen (pages/about.html) is addressed by #/about. This allows links to be made

between screens using the href attribute, without having to add a click handler to every

link. It also means that the URL changes with every screen change, allowing the back

button to function.

Many screens require parameters to be passed to them. These parameters are also passed

in the URL hash, using the standard URL query syntax, separated by a question mark (?).

For example, the results screen must be passed a search query, and (optionally) a sort

value. A hash might be #/results?query=quarks+AND+author:Aglietti&sort=date.

Each screen also accesses global state (namely, source information) from the app object in

the global namespace.

5.2.1 Migrating to Ratchet

During the project, the CSS framework used was changed from Bootstrap to Ratchet, due

to Ratchet's specialisation in mobile applications, and its adaptability to different mobile

OS platforms. In terms of CSS, the change was very straightforward.

Ratchet also includes its own system for creating single-page applications, called Push.js.

Using Push.js, however, would have required a major change in code structure, so it was

not used.

16 | P a g e

CERN openlab Summer Student Report 2014

5.3 Preventing Cross-Site Scripting

Cross-site scripting attacks (where the attacker includes malicious JavaScript in an

HTML page via unsanitised inputs) become even more dangerous in hybrid applications,

as the malicious script has access to whichever abilities the application has enabled via

plugins. In the case of Invenio Mobile, a malicious script served by a compromised server

could access the device's file system.

To prevent this, all data received from the server must be sanitised before being included

with HTML. To this end, Hungarian notation is used to track unsafe data across the

application, as described in a blog post by Joel Spolsky [12]. Unsafe data is passed

through an appropriate sanitiser before being displayed.

5.4 Storing files

There are two cases in which the application must store files on the file system: the user

wishes to view a file associated with a record; or the user wishes to save a file for offline

viewing.

In the first case, the file need not be stored permanently, but simply cached. The

application stores these files in the cache/ subdirectory of the data directory given it by

the operating system. On Android, this directory is cleared whenever the user touches

“Clear cache” in the Apps menu of Settings.

In the second case, the file is stored in the saved-files/ subdirectory. The application

must keep track of what files are stored for each record (see section 5.5, Storing records).

In both cases, files must be stored such that two files which have the same name but

belong to different records (or even different sources) do not conflict. To this end, each

source has a subdirectory in the cache/ and saved-files/ directories, and each record has

a subdirectory of its source's directory, in which its files are stored. For example, a file

named paper.pdf for record 42 on the CERN Document Server, which is to be viewed

offline, would be stored at saved-files/ch.cern.cds/42/paper.pdf (ch.cern.cds being

CDS's identifier in reverse domain name notation).

17 | P a g e

CERN openlab Summer Student Report 2014

5.5 Storing records

A file system is not very well suited to storing the records themselves. The application

often needs to list all offline records, and opening one file per record would be a slow

way to do this. Performing queries on the list of offline records would also be

unnecessarily complex. A database is much more suitable.

TaffyDB [13] is a NoSQL database implemented in JavaScript. It allows databases to be

kept in a browser's local storage (a key-value store), and is used to store offline records.

Each row in the database contains the source and record IDs of a record, the record itself

and an array of the names of files which have been saved with it.

5.6 The API and Imposter

The REST API with which the application interacts was not integrated into Invenio

during this project. Instead, a Flask blueprint which returned sample data was created,

and this was run as a module of Invenio for testing.

5.7 Authentication

Access token retrieval over OAuth2 was implemented.

The authorisation process requires the user to visit a series of Web pages on the website

of the source. Because the source is untrusted, these pages cannot be embedded in an

inline frame, as there is a risk that a script in the page might break out of the frame and

access the Cordova APIs. Instead, the Cordova InAppBrowser displays the pages, and an

event is used to detect the redirect containing the access token.

The access token is saved with the other source information in local storage, and sent to

the source with every request made, contained in the Authorization HTTP header.

6 Conclusion

A cross-platform mobile application was created for accessing Invenio document

repositories, using a single-page application in Apache Cordova. Its connector

architecture allows additional source types to be added in future. OAuth2 authentication

is supported.

18 | P a g e

CERN openlab Summer Student Report 2014

The project specification was met, as the mobile user experience for Invenio users has

been improved. A “stub” API module has been created for testing purposes, as set out in

the project goals.

7 Further Work

The largest items of further work are discussed in this section. These, along with more

minor items, will be filed as issues on the project's GitHub repository.

7.1 API Implementation

The Flask blueprint that currently responds to requests from the application only serves

sample data, no matter what is contained in the document repository. This module must

be adapted to serve actual data from the repository, according to the API specified in

Appendix A: Invenio REST API (page 22). Configuration options will also be required to

form responses for the info call. Modifying the API to have versions for backwards

compatibility would also be prudent.

7.2 Cache clearing

Currently, the cache of files which have been viewed is never cleared (unless an Android

user clears it manually), meaning that heavy use of the application for a long period of

time could cause a large amount of storage space to be used. A system for removing old

files from the cache should be implemented.

7.3 Testing on iOS

During this project, the application could not be tested on iOS, because the iOS

development environment only runs on Apple OS X. Testing of the iOS theme was done

by using Apache Ripple [14] and changing the HTML of the index page using the

browser's inspector.

To deploy an iOS application in future, code must be added to detect which platform the

application is running on, and adapt accordingly. Changing the stylesheets can be done

using the merges/ directory (see below), so the code will simply need to change the class

of the <body> tag in the index page to indicate the current platform.

19 | P a g e

CERN openlab Summer Student Report 2014

Platform-specific files are best deployed using the merges/ directory in the Cordova

project. The Grunt build system will need to be adapted to compile files in that directory

in addition to those in the www/ directory.

7.4 Tagging

Now that the application supports authentication, other features become possible. The

most obvious is to let the user tag records in the application and synchronise those tags

with the source, integrating with the tagging system already implemented on the Invenio

Web interface.

7.5 Tablet support

Currently, when run on tablets, the application's user interface just expands to fill the

screen. This does not take advantage of the extra screen space available. For example,

when the user is viewing a record, the list of search results could remain visible on the

left of the screen, for quicker browsing through results (see the wireframe in Figure 5).

The current system for managing screens only allows one to be visible on the display at

once. For tablets, it would be beneficial to allow two (or possibly more) screens to be

visible at once, so that the view in figure 5 could be made up of the existing results and

record screens.

Support for tablet layouts does not yet exist in Ratchet, but it is planned [11].

20 | P a g e

CERN openlab Summer Student Report 2014

21 | P a g e

Figure 5: A wireframe for a possible improvement of the record screen on a tablet. The

list of search results is still visible on the left, and the user can touch a result to show the

record in the right pane.

CERN openlab Summer Student Report 2014

Appendix A: Invenio REST API

To allow the application to interface with Invenio servers, a Web API was designed,

following the principles of REST (Representational State Transfer) [15]. This appendix

lists the calls which can be made to this API.

To keep API calls and the HTML interface separate, the URL of each call is prefixed with

api/.

All data returned is in JSON (JavaScript Object Notation) format [16]. Dates are returned

in ISO 8601 format [17].

info

Returns information about the Invenio server, such as the human-friendly name of the

source, the URL of its icon, the version of the API that is in use, and authentication

details.

This call allows the application to retrieve all the information it needs about a source

given only the URL of its home page. A user wanting to add INSPIRE as a source, for

example, would simply enter inspirehep.net/ into the Add Source screen. The

application would then read http://inspirehep.net/api/info to acquire the source

name, its icon, and any technical details it needs to use INSPIRE as a source (such as the

API version being run on the server and its capabilities).

The returned object has the following members:

id: a string which uniquely identifies the source. Values should use reverse domain

name notation, for example ch.cern.cds.

invenio_api_version: the version number of the API provided by the server.

name: a human readable name for the server, for example “CERN Document Server”.

description: a description of the source's content, which is displayed to the user on

the Add Source screen.

22 | P a g e

http://inspirehep.net/api/info
http://inspirehep.net/

CERN openlab Summer Student Report 2014

authentication_url: the URL for the user to authenticate at, including the appropriate

query string. The state parameter should be set to {STATE}, so that the mobile

application can replace it with a generated CSRF token.

search?<parameters>

Returns the results of the given search query.

The returned object has three members: lines, results, and paging. The results of the

search are contained as objects in the results array. Each result must have id and title

values, but can have other members according to the server's configuration.

The lines array specifies how the server would prefer records to be displayed on the

client, and is a list of line specifications. Each line specification has the following

members:

field: the field to display on this line. Must be a key of a field in the record objects.

classes: the CSS classes to apply to the line, as an array (or a string for a single

class). The mobile application has a number of classes which it can apply, namely

authors, bold, italic, small, and rightSide (which aligns the line's content to the

right, next to that of the next line specification in the lines array).

filter: a filter to be applied to the field value, for formatting of dates or lists. The

mobile application currently has two filters: date (which formats ISO 8601 dates

[17]) and joinList (which joins lists of strings with semicolons).

This allows the server administrator to customise the list view that the user sees when

searching their site using the mobile application.

The paging object describes the position of the returned results in the complete list, and

has the following members:

page_start: the zero-based index of the first result in this response.

count: the total number of results.

23 | P a g e

CERN openlab Summer Student Report 2014

Parameters:

query: the query to be performed. Uses the same format as the HTML interface.

sort: the order in which to sort the results. Valid values are relevance, date, and

citations.

page_size: the number of results to return.

page_start: the zero-based index of the first result to be returned. For example, if

pages of 10 results are being used, to get the third page the client would specify

page_size=10 and page_start=20.

record/<id>

Returns a summary of the record with the given ID number. The response is a JSON

object with the following fields:

id: the ID of the record, as a string.

title: the title.

authors: an array of author objects. Each author object can have the following fields:

name: the author's name.

inst (optional): the name of the author's institution.

journal: the journal in which the record was published.

date: the date of publication.

report_numbers: an array of report numbers for this record.

abstract: the abstract.

keywords: an array of keywords associated with this record.

files: an array of file objects. Each file object has the following fields:

label: the label to be displayed for this file (e.g. “PDF”).

24 | P a g e

CERN openlab Summer Student Report 2014

name: the name of the file.

type: the MIME type of the file.

record/<id>/files/<file_name>

Returns the named file associated with the record.

25 | P a g e

CERN openlab Summer Student Report 2014

Bibliography

[1] Apache Software Foundation, "Apache Cordova", https://cordova.apache.org/

[Accessed: July 24, 2014]

[2] Adobe Systems Incorporated, "Adobe Announces Agreement to Acquire Nitobi,

Creator of PhoneGap",

https://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquires

Nitobi.html [Accessed: July 24, 2014]

[3] CoffeeScript contributors, "CoffeeScript", http://coffeescript.org/ [Accessed: July 24,

2014]

[4] Less Core Team, "Less.js", http://lesscss.org/ [Accessed: July 24, 2014]

[5] Grunt contributors, "Grunt: The JavaScript Task Runner", http://gruntjs.com/

[Accessed: July 24, 2014]

[6] The jQuery Foundation, "jQuery", https://jquery.com/ [Accessed: July 24, 2014]

[7] Thomas Fuchs, "Zepto.js: the aerogel-weight jQuery-compatible JavaScript library",

http://zeptojs.com/ [Accessed: July 24, 2014]

[8] GitHub users, "Zepto incompatible with Bootstrap 3",

https://github.com/madrobby/zepto/issues/791 [Accessed: July 24, 2014]

[9] Twitter, Inc., "Bootstrap", http://getbootstrap.com/ [Accessed: July 24, 2014]

[10] Connor Sears and other contributors, "Ratchet", http://goratchet.com/ [Accessed:

July 24, 2014]

[11] Mark Otto, Connor Sears, "Introducing Ratchet 2",

http://blog.getbootstrap.com/2014/02/25/ratchet-2/ [Accessed: July 24, 2014]

[12] Joel Spolsky, "Making Wrong Code Look Wrong",

http://joelonsoftware.com/articles/Wrong.html [Accessed: August 20, 2014]

26 | P a g e

CERN openlab Summer Student Report 2014

[13] Ian Smith and other contributors, "TaffyDB", http://taffydb.com/ [Accessed: August

21, 2014]

[14] Apache Software Foundation, "Apache Ripple", https://ripple.incubator.apache.org/

[Accessed: August 21, 2014]

[15] Roy Thomas Fielding, "Architectural Styles and the Design of Network-based

Software Architectures", 2000

[16] Ecma International, "The JSON Data Interchange Format – ECMA-404",

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

[Accessed: July 24, 2014]

[17] International Organization for Standardization, "ISO8601:2004 – Data elements and

interchange formats -- Information interchange -- Representation of dates and

times", 2004

27 | P a g e

	1 Introduction
	2 Project Goals
	3 Technologies
	3.1 Apache Cordova and HTML5
	3.2 CoffeeScript
	3.3 Less
	3.4 Grunt
	3.5 jQuery
	3.5.1 Zepto.js, a lightweight alternative

	3.6 Bootstrap and Ratchet

	4 Design
	4.1 User Interface
	4.1.1 Design objectives
	4.1.2 UI Flow
	4.1.3 Screen designs

	4.2 Single page applications
	4.3 Server API and connector architecture

	5 Implementation
	5.1 Directory structure and compilation process
	5.1.1 Merges

	5.2 Screens and state
	5.2.1 Migrating to Ratchet

	5.3 Preventing Cross-Site Scripting
	5.4 Storing files
	5.5 Storing records
	5.6 The API and Imposter
	5.7 Authentication

	6 Conclusion
	7 Further Work
	7.1 API Implementation
	7.2 Cache clearing
	7.3 Testing on iOS
	7.4 Tagging
	7.5 Tablet support

	Appendix A: Invenio REST API
	Bibliography

