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SUMMARY Despite the relevant fire risk to which Italy is subject from the
north to the south, very few analyses focus on this topic. This article
investigates the causes of forest fires frequency and intensity in Italy during
the first decade of the twenty-first century. The dynamical aspects of fire
danger are explored through the use of panel data techniques, which fully
capture the impacts on forest fires regarding changes in both
socio-economic and climatic conditions. Italy is treated as a unique region
in an initial model specification, and is then split into 3 geographical areas
(north, center, and south) to capture locally specific aspects. Two different
dependent variables are alternatively employed and a number of ad hoc
tests are performed to corroborate the robustness of our estimates.
The results highlight the importance of considering the fire situation
separately for the northern, central, and southern parts of Italy. While the
presence of railway networks positively affects fire risk, the impact of
livestock depends on its specific composition. Favorable effects in fire
reduction are represented by the increase in education levels (north and
center) and touristic flows (north and south), and by the containment of
illegal activities (south). Weather patterns appear to be important
determinants throughout the Italian peninsula.
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1. Introduction and Motivation 

 

Forestland and trees offer vital services such as commercial and recreational uses, water and climate 

regulation services, and carbon sequestration activity. Unfortunately, there are  several forest 

disturbances that undermine these  service provisions. Compared to other calamities such as pests, 

plant diseases, wind, frost etc., fire represents the most threatening one in the Mediterranean area 

(Alexandrian et al., 1999). 

 

Forest fires recur  year after year, with a devastating intensity. There is no natural and vegetative 

landscape, which has not been altered by fire. Despite the fact that during the last decades scarce 

precipitations along with high temperature levels have been impacting the fire risk (Moriondo et al., 

2006), these two variables represent just some of the possible causes of forest fires. Fire risk 

depends on a number of regional specific factors (Moreno et al., 1998 and Martinez et al., 2008 and 

2009; Westerling et al. 2006 for US, among others), human attitudes (Barbero et al., 1990; Martinez 

et al., 2008 and 2009; Pausas and Keeley, 2009), and weather patterns (Westerling et al. 2006; 

Pausas and Fernández-Muñoz, 2012). The combination of all these aspects is therefore responsible 

for generating the final scenario of fire danger.  

Recent studies acknowledge that forest fire risk is common to the overall southern Mediterranean 

area (Pausas et al., 2008 for Mediterranean area; Miranda et al., 2008 for Southern Europe; 

Dimitrakopoulos et al., 2011 for Greece; Costa et al., 2011 for Portugal). Italy is not an exception 

since it is affected by relevant fire risk from the north to the south. A consistent number of fire 

events occur not only during the warm seasons, as one would  expect, but also during the winter. In 

the last decade, 360 fire events were registered on average each  year. This frequency is associated 

with around 40 km2 of land burnt, per year, and per region. In the first quarter of 2012, 3900 forest 

fire events occurred corresponding to 190 km2 of forest area covered by fires. Compared to the 

same period in 2011, Italy experienced a 165% increase in the number of fire events and a 196% 

enlargement of the area affected (Corpo Forestale dello Stato, 2012).2 

 

This article fills several gaps in the literature by investigating the causes of forest fire frequency and 

intensity examining fire regimes during the first decade of the twenty-first century.  

 

                                                
2 For more details see http://www3.corpoforestale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/313 
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First, it focuses on the Italian situation, which, so far, has been analyzed by very few investigations. 

It highlights signs and magnitudes of the effects considered, which are sometimes controversial in 

the literature. The present study initially considers the overall Italian peninsula.3 It then analyses the 

fire situation by classifying the Italian territory into three geographical areas (north, center , and 

south) to highlight differences in fire patterns across regions and to provide a more in depth 

investigation regarding the  role of humans and the characteristics of forest fire occurrences.  

Second, differently from the majority of existing analyses (Chuvieco et al., 2008; White et al., 

2011), we account for both social-economic and weather patterns in the characterization of fire 

regimes. Most events are indeed strictly linked to human behaviors, fraudulent causes or other 

socio-economic conditions (Yang et al., 2007; Martinez et al. 2008 and 2009; Leone et al., 2009; 

Lovreglio et al., 2010; de Torres Curth et al. 2012).  However, physical/weather patterns are also 

responsible (Chou et al., 1993; Pinol et al., 1998; Pausas, 2004; Moriondo et al., 2006; Westerling 

et al. 2006; Pausas and Bradstock, 2007; Pausas and Fernández-Muñoz, 2012).   

 

Third, on the methodological side, we implement a panel data approach fully capturing the 

dynamics of fire occurrence and the change in socio-economic and weather conditions in time. To 

corroborate the robustness of our estimates we use two, rather than just one, dependent variables, in 

addition to a number of ad hoc tests. Apart from a few exceptions, existing studies for Italy are 

based on the observation of simple historical trends and do not apply accurate econometric 

techniques to corroborate obtained results. Additionally, geographical-oriented approaches to forest 

fire analysis tend to account for fire realizations at some point in time (e.g., one specific year) 

neglecting dynamic aspects.  

 

This  paper is organized as follows. Section 2 illustrates the historical situation of forest fires in 

Italy while section 3 discusses main driving factors of forest fire frequency and intensity. Section 4, 

in addition to describing the data construction process, draws descriptive statistics on both 

dependent and independent variables. Section 5 offers a brief survey on methodologies useful to 

analyze the fire regimes, and then describes the chosen theoretical framework. Sections 6 and 7 

report findings derived from different model specifications while section 8 concludes. 

 

                                                
3 Examples of regional analyses  are provided by Telesca and Lasaponara, 2006 for central Italy; Bajocco and Ricotta, 
2008, Telesca et al. 2005, Pazienza and Beraldo, 2004 for southern Italy; Zumbrunnen et al. 2009 and Wastl et al., 2012 
for northern Italy. 
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2. A Brief History of Forest Fires in Italy 

Among the Mediterranean countries Italy represents one of the most prone areas to forest-fires.4 For 

example, Moriondo et al. (2006) find that Italy experiences the highest increase in annual extreme 

events in future scenarios conducted through return period analysis. Fire events cover the entire  

Italian peninsula, from the north to the south, however the larger wildfire events normally occur in 

the south (Figure 1). This explains why the few existing Italian-based analyses on fire events  

mostly focus  on southern Italy (Pazienza and Beraldo, 2004; Bajocco and Ricotta, 2008). 

Figure 1. Number of forest fires (x axes) by region and macro-area (1990-2008) 
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The fire situation in Italy has a seasonal component. Events take place not only during the hotter 

periods but also during the colder ones. The most  affected months appear to be February-March, 

July-August-September (Figure 2).  

 

Figure 2. Seasonality in number of fire events (1990-2008) 
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    Notes:  Months and N. of fires are represented respectively in the x and y axes. 

                                                
4 See the fire history section within the European Forest Fire Information System (EFFIS) for the details of the total 
number of fire events, total area burnt, and the average fire size from 1985 to 2010 (http://effis.jrc.ec.europa.eu/fire-
history) 
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Regarding medium and long-term fire patterns, during the 1990-2008 period there were several 

years with high frequency fire episodes, while during the last decade there were much less of them : 

2003, 2005 (for some regions), and 2007 (Figure 3).  

 

Figure 3. Forest fires dynamics, n. of events (1990-2008) 
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Notes:  Years and N. of fires are represented respectively in the x and y axes. 

 
Finally, using a ten-year moving average, a downward trend in fire frequency is shown for most 

regions in the north and the center .5 For the remaining regions, especially in the south, a steady or 

mixed trend applies (Figure 4).  

 

Figure 4. Forest fires dynamics, n. of events (1990-2008) 

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

1 2 3 4 5 6 7 8 9

Abruzzo

Emilia Romagna

Friuli-Venezia Giulia

Marche

Molise

Trentino-Alto Adige

Umbria

Aosta Valley

Veneto

Basilicata

Calabria

Campania

Lazio

Liguria

Lombardy

Piedmont

Apulia

Sardinia

Sicily

Tuscany  

                                                
5 Each interval represents a 10-year average of forest fire events for each region. For example, 1 is associated to the 
average of fire frequency between 1990 and 1999, while 2 relates to the 1991-2000 period, and so on. Information used 
(from JRC) lacks data for Sardinia during 1990-1996, and for Liguria in 1996. These missing data are  accounted for 
when the moving average trends are obtained.	  
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3. Forest Fires Driving Forces  

Notwithstanding a high number of fire events remains without a well-identified cause (Alexandrian 

et al., 1999; World Wide Fund, WWF, 2004),6 the literature typically distinguishes between natural 

and socio-economic conditions. This has originated two main streams of research. The first places  

more attention on natural-climatic or weather patterns (Chou et al., 1993; Pinol et al., 1998; Pausas, 

2004; Moriondo et al., 2006; Westerling et al. 2006; Running, 2006; Pausas and Bradstock, 2007; 

Pausas and Fernández-Muñoz, 2012). The second emphasizes the social-economic variables that are 

assumed to generate higher impacts on fire ignition (Cardille et al., 2001; Leone et al. 2002; Yang et 

al., 2007; Martinez et al. 2008 & 2009; Leone et al., 2009; Lovreglio et al., 2010; de Torres Curth et 

al. 2012). Figure 5 summarizes frequently used drivers in forest fire analyses .  

 

Figure 5. Popular fire drivers in the literature 

Variable
Relation 
with fire Explanation Studies considering the variable

Precipitation Negative Higher humidity and precipitation slow down the process of forest 
fuels dry out, reducing fire risk.

Pausas, 2004; Trouet et al., 2006; Westerling et al., 
2006; Pausas and Bradstock, 2007; Trouet et al., 
2010

Temperature Positive
A rise in temperature leads to a drop in fuel moisture, and increase 
flammability of live and dead fuels, therefore raising the likelihood of 
observing fire events.

Pinol et al., 1998; Wotton et al., 2003; Pausas, 2004; 
Trouet et al., 2006; Westerling et al., 2006; Running 
2006; Pausas and Bradstock, 2007

Drought Negative
It depends on the combination of precipitation amounts and 
temperature: it causes plant mortality and impact long-run forests 
flammability.

Lloret et al. 2002; Breda et al. 2006; Aguado et al., 
2007

population density/ 
growth rate

Mixed

A population enlargement may increase possible ignition causes 
due to human accidents. On the other hand, higher land demand, 
following the raise in population, could slow down the land 
abandonment process, e.g., the forest spontaneous re-growth.

Donoughue and Main, 1985; Serneels and Lambin, 
2001; Leone et al. 2002; Mercer and Prestemon, 
2005; Vadrevu et al., 2006; Syphard et al., 2007; 
Gellrich et al., 2007; Martinez et al., 2009; de Torres 
Curth et al. 2012; 

Infrastructures, 
connections Mixed

A greater number of roads and railways may put more pressure on 
wild lands raising possible ignition causes. Nevertheless, good 
communication routes may help fire prevention and suppression.

Cardille et al., 2001; Pew and Larsen, 2001; 
Martinez et al., 2009; 

Agriculture and 
pasture 

intensification
Mixed

Fire is often used by shepherds and farmers to i) maintain 
herbaceous vegetation only; or ii) eliminate wasting harvest in 
borders of croplands, iii) remove pests.

Bolgiano, 1998; Kuhlken, 1999; Chuvieco et al., 
1999; Leone et al. 2002; Pazienza and Beraldo, 2004; 
Vigilante et al., 2004; Whalley, 2005; Martinez et al., 
2009

Education Negative
More educated people may have a higher civic sense wich helps 
containing the number of fires due to human perverse behaviour or 
accidents.

Butry et al., 2002;

Unemployment   
Poverty level

Positive Higher wellbeing and employment levels may discourage people 
from setting forests on fire for profit reasons.

Chuvieco et al., 1999; Leone et al., 2002; Butry et 
al., 2002; Pazienza and Beraldo, 2004;  Mercer and 
Prestemon, 2005; Maingi and Hendry, 2007; 
Martinez et al., 2009; de Torres Curth et al., 2012

Depopulation of 
rural areas Positive

It implies land abandonment and spontaneous colonization of 
natural vegetation. This, translates in additional forest biomass, and 
consequently in greater forestland flammability.

Le Houérou, 1987; MacDonald et al., 2000; Romero-
Calcerrada and Perry, 2004; Koutsias et al. 2005; 
Martinez et al. 2009. 

Touristic migration Mixed

The touristic use of forests for recreation could raise the probability 
of ignition by accident or negligence (campfires, smokers, etc.); 
Nevertheless, the parallel forest preservation for recreational scopes 
could impact the same probability with opposite sign. 

Atkinson and Therneau, 2000; Leone et al. 2002; 
Martinez et al., 2009

Presence of illegal 
organizations

Positive

Illegal organizations can control economical activities connected 
with land; set forests on fires to gain land for agriculture or pasture, 
retained more valuable than preserving forests for recreational use 
or logging.

Leone et. al, 2002; Gonzalez-Olabarria and Pukkala, 
2011

 

                                                
6 See special issue on Mediterranean Forests by FAO Unasylva Vol. 50, No. 197, (available at: 
http://www.fao.org/docrep/x1880e/x1880e00.htm). See also WWF, Forest fires in the Mediterranean: a burning issue 
(available at: http://ec.europa.eu/environment/forests/pdf/meeting140504_wwffirstdocument.pdf). 
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4. Database “Construction” and Descriptive Findings 
 

To capture the dynamics in forest fires we constructed a balanced panel dataset for the 2000-2008 

period for 19 Italian regions. It includes two dependent and around 20 explanatory variables. 

Although the data on forest fires is available for all 20 Italian regions, we eliminated the Aosta 

Valley region from our analysis due to the lack of data on most of the socio-economic and climatic 

variables. We believe that this exclusion has no impact on final results, since this region is the least 

prone area to forest fires in Italy.7 
 

4.1 Dependent Variables 

Two different dependent variables are used for the analysis. The first represents the frequency of 

forest fires, namely, the number of fire events in a given region in a given year (lnfn_tot). The 

second (lnburntot) is the area burnt in each region, in each year, measured in square kilometers. 

Both variables are expressed in natural logarithms, a convenient transformation which does not alter 

final results. The two variables are highly and positively correlated, but capture different aspects of 

fire dynamics. Therefore, using them both allows a richer interpretation of the results and also 

provides a robustness check. As shown in Table 1 there is an annual average of around 382 fire 

events and of 42.49 square kilometers of forest acreage destroyed per region. The lowest annual 

number of fire events took place in Veneto in 2004 (11 fire events), whereas the highest occurred in 

Sardinia in 2005 (3022 fire events). Aggregating Italian regions into three sub groups (north, center, 

and south) we notice that southern Italy is affected the most, followed by central and northern Italy.  

 

Table 1. Statistics on the dependent variables (2000-2008). Regions grouped in three areas 
Dependent Variable Regional Aggregation Obs Mean Std. Dev. Min Max 
# of events North 48 156 124 11 491 
# of events Centre 60 273 233 19 1041 
# of events South 78 605 563 28 3022 
Dependent Variable Regional Aggregation Obs Mean Std. Dev. Min Max 
Area burnt in km2 North 48 10.60 14.88 0.02 67.17 
Area burnt in km2 Centre 60 19.81 27.11 0.36 135.67 
Area burnt in km2 South 78 79.57 91.95 1.01 464.51 

 

2003 and 2007 which are the most relevant years in terms of fire frequency (Figure 3), still confirm 

existing divergence across regions and the higher vulnerability of the south (Figure 6a/b and Table 

                                                
7  Aosta Valley records on average 15 events, which translate into 6.5ha size of area burnt per year.	  
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2). To control for yearly fluctuations effects on fire occurrence (Prestemon et al., 2002; Preisler et 

al., 2004) we add year dummies in our panel-based models.   

 

Figure 6a. Number of fires in 2003 (left) and 2007 (right) 
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Figure 6b.  Area burnt (km2) in 2003 (left) and 2007 (right) 

 

< 6

7-30

31-90

>91

Burnt area km 2

 



 9 

Table 2. Classification of fire events in 2003 and 2007 

Number of fire events in 2003 by size  
Regional Group < 1  1 < # < 2.5 

 
2.5 < # <5 

 
> 5  Total events Average size per 

event (in km2) 

North 1321 17 6 2 1338 0.069 
Centre 2975 47 13 3 3022 0.083 
South 5304 92 28 9 5396 0.107 
Italy 9600 156 47 14 9756 0.094 
Classification of fire events in 2007 by size  
Regional Group 

< 1  
1 < # < 2.5 

 

2.5 < # <5 

 
> 5  

Total events Average size per 
event (in km2) 

North 942 14 1 0 958 0.059 
Centre 2145 42 13 3 2187 0.116 
South 7249 342 135 50 7591 0.259 
Italy 10338 398 149 53 10736 0.212 
 

The monthly average of forest fire size suggests that the largest fire events take place in July and 

August. June and September also show high figures although 4 times lower than the mean of July 

and August. Interestingly, despite what one would  expect, a significant number of forest fires occur 

during low-temperature periods, especially in February and March (Table 3). 

 

Table 3. Monthly amount of area burnt during 2000-2008 (measured in km2)  
Month Obs Mean Std. Dev. Max 

January 186 0.94 4.01 41.27 
February 186 1.06 3.95 34.90 
March 186 1.88 4.78 42.21 
April 186 0.54 1.17 7.59 
May 186 0.38 1.28 15.39 
June 186 3.69 10.27 94.20 
July 186 14.35 32.27 191.63 
August 186 14.40 28.51 195.55 
September 186 3.65 6.53 46.32 
October 186 0.76 3.11 34.54 
November 186 0.50 1.68 12.51 
December 186 0.35 2.13 20.67 

 

Pooling the information obtained on the size and frequency at monthly averages per region and year 

(Tables 3 and 4), and given the outcomes of a correlation analysis, we acknowledge that the two 

variables are highly correlated. Yet, in some cases, their comparison helps us to draw interesting 

information. For instance, while in February the number of events is in line with that of the 
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remaining months, the total amount of forest area covered by fires is relatively high, suggesting a 

large average size. 

Table 4. Monthly fire events during 2000-2008 (average number per year and regions) 
Month Obs Mean Std. Dev. Max 

January 186 12.92 55.49 723 
February 186 15.02 24.14 155 
March 186 27.10 38.03 187 
April 186 12.06 15.13 73 
May 186 9.31 14.08 79 
June 186 29.89 59.42 528 
July 186 92.91 146.42 1175 
August 186 114.40 159.07 814 
September 186 47.5 72.58 447 
October 186 12.17 32.08 228 
November 186 5.06 9.73 58 
December 186 3.54 12.01 110 

 

4.2 Explanatory Variables: Weather Patterns 

 

Weather patterns in the analysis are represented by precipitation and temperature, temperature 

excursion (i.e., the difference between the annual maximum and minimum temperature), and the 

number of consecutive hot days in one year. The interactions of some of these variables are also 

included among the explanatory ones. 

 

Over the period considered, the annual average number of consecutive hot days for each region 

ranges between 0 and 43.25 (Sardinia in 2003). In the north, center, and south, on average, 2.80, 

6.40, and 11.65 consecutive hot days are recorded respectively. The annual excursion in 

temperature ranges between 7.3 °C and 12.8 °C. Despite yearly fluctuations and inter-annual 

variability,  general paths can be identified in precipitation levels (Figure 7 (a) and Table 5): they 

are higher during the winter period (September-December) and notably decrease from May to 

August, especially in July. Temperature (Figure 7(b) and Table 6) shows a clear seasonal effect. Its 

level progressively raises starting in  January,  peaks around July, and then decreases slowly until 

the January values again. This seasonal effect is normally reflected in fire events (see e.g., Bajocco 

and Ricotta, 2008).  
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Figure 7. Monthly precipitation in mm (a); Monthly temperature in °C (b) during 2000-2008 
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Given the patterns in Figure 7 (a), we create three trend variables to account for changes in 

precipitation levels, which are then used to estimate our models. These are highlighted by the red 

line: i) precipitation from January to April (with a monthly average of 69mm during 2000-2008); ii) 

precipitation from May to August (with a monthly average 48.5mm during 2000-2008); and iii) 

precipitation from September to December (with a monthly average 88mm between 2000-2008). 

Regarding  temperature, we focus on the summer data instead, constructing a variable related to the 

average June to August period (35.4°C). 

 

Table 5. Monthly precipitation levels during 2000-2008 (measured in mm)  
Label Obs Mean Std. Dev. Min Max 
January 190 69.40 47.17 0.8 252.64 
February 190 56.31 37.18 0 178.47 
March 190 62.29 40.47 1.1 213.7 
April 188 67.73 34.44 3.8 237.1 
May 189 58.70 41.15 1.64 212.6 
June 189 49.36 35.53 0.33 140.6 
July 190 32.92 31.35 0.02 146.6 
August 188 48.11 48.29 0 237.4 
September 186 79.35 41.44 10.37 238.33 
October 189 75.85 44.46 1.86 230.1 
November 187 105.41 64.76 16.61 416.13 
December 187 90.36 53.99 0 275.47 
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Table 6. Monthly temperature levels during 2000-2008 (measured in Degree Celsius)  
Label Obs Mean Std. Dev. Min Max 
January  170      16.15 2.93 8.8 22.47 
February 171 16.93 2.47 9.7 23.6 
March 170 21.99 2.41 16.53 30.57 
April 168 24.42 1.72 20 29.33 
May 167 30.29 2.66 23.2 38.75 
June 169 34.27 2.31 29.43 41 
July 169 35.80 2.56 29.3 43.37 
August 169 35.12 2.93 27 41.85 
September 167 31.12 2.58 23.1 38 
October 171 26.33 2.72 19 33.5 
November 171 21.36 2.92 13.8 28.53 
December 169 16.59 3.11 8.1 23.25 

 

4.3 Explanatory Variables: Socio-economic Factors 

 

Several socio-economic driving factors have been identified and used as controls in the model 

specifications. In this subsection we summarize the main information about the variables included 

in the model specifications within this paper given their statistical significance. The complete list of 

variables can be found in the Appendix 1.  

 

Population density varies in Italy across regions and ranges from 59 (Basilicata) to 428 people per 

km2 (Campania). The number of people in a region in a given year is strongly subject to touristic 

flows. During the 2000-2008 period, apart from Campania (42 million), touristic arrivals were 

concentrated in northern Italy. Indeed, Veneto, Tuscany, Emilia-Romagna, Lazio, Lombardy, 

Trentino-Alto Adige welcomed roughly 116.5, 95, 82, 80, 79, and 74 million of tourists within a 

nine year period. Touristic migrations could alter the chances of ignition by accident or negligence 

resulting differently across regions. For example, 2007 was one of the peak years for touristic 

arrivals in Italy (i.e., roughly 266.5 million arrivals within 2007). This could have fostered the 

incidence of fire in that specific year. 

 

Concerning economic conditions, the households’ wellbeing varies significantly  between the north 

and the south. For example, the ISTAT indicator of relative poverty reports, for 2008, shows that 

the percentage of population below the poverty level ranges between 3.9% (Emilia Romagna) and 

28.8% (Basilicata and Sicily). During the whole period analyzed, on average, around 22%, 5.92%, 
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and 6.01% of the population was declared to be “poor” respectively in southern, central and 

northern Italy. According to our data, the poverty indicator is negatively correlated with the portion 

of population that has a tertiary degree in a given region, which varies significantly from the north 

to the south and normally increases over time. The use of land is closely linked with the 

employment rate in the agriculture sector. The percentage of population employed in this sector in 

2008 varies from 1.70% (Lazio) to 9.12% (Calabria).  

 

Italy is characterized by the presence of illegal associations, which control economical activities 

connected to agriculture and pasture practices. Their control may impact land allocation and 

therefore, forest fire occurrences.8 Especially in the past, forests have been voluntarily set on fire  to 

create firefighting  jobs or to gain land for agriculture and pasture which were retained more 

valuable than logging (Leone et. al, 2002). Indeed, low timber returns along with negligent forest 

management can result in higher fire risk (Gonzalez-Olabarria and Pukkala, 2011).9 To capture the 

effect of the presence of illegal activities/associations on human-induced fires we use the proxy 

variable ‘number of extortions per 1000 inhabitants’, which shows an increasing trend in time in 

many Italian regions. This variable may also reflect the different incidence across regions. For 

example, in 2008, extortions per 1000 inhabitants ranged between 0.04 (Friuli-Venezia Giulia) and 

0.21 (Campania). Table 7 below summarizes this information.  

 

Table 7. Descriptive statistics of the main variables 
Variable Obs Mean Std. Dev. Min Max 

lnfn_tot (dep. var.) 186 5.36 1.14 2.40 8.01 
Lnburntot (dep. var.) 186 2.72 1.54 0.02 6.14 
lnpop_den 190 5.07 0.57 4.08 6.06 
lnrail_den 190 4.59 0.76 2.80 5.90 
rela_pov 170 12.74 8.68 2.50 30.80 
Lnbovine 190 1.85 1.33 0.002 4.37 
Lncaprine 190 1.15 0.66 0.32 2.63 
p_ter_deg 190 7.34 1.76 3.65 12.75 
p_emp_agri 190 5.52 2.94 1.53 12.79 

                                                
8 According to Naveh (1995), throughout Europe humans have had a great role in modifying landscapes and landscapes 
result from the combination of different cultural views. 
9 In Italy, the presence of illegal associations has been partially favored  by the lack of law enforcement.  Regulation n. 
353, which dates back to November 2000 (G. U. n. 280: 30/11/2000), establishes temporal binding constraints on the 
use of the area covered by forest fire.  Precisely, after burnt areas are identified, they must be censed by municipalities.  
For at least 15 years from that moment, it is prohibited to devote these lands to different uses such as agriculture, 
urbanization, etc.  For 5 years, it is also forbidden to reforest those areas by using public funds. Despite its existence, 
this law has only been partially enforced and only in some Italian regions. In principle, to contain this problem the more 
recent regulation n. 3606 of 2007 (GU n. 204: 3-9-2007), puts a distrusting mechanism in place for defaulting 
municipalities. Again, despite this effort, some regions still do not provide accurate  information about defaulting 
municipalities neutralizing the benefiting effect of this law on the reduction of forest fire occurrence.  
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extor_1000 190 0.08 0.04 0.02 0.21 
Lnarrivals 190 5.10 1.30 1.31 7.75 
Lnnhot 190 1.76 0.98 0.00 3.79 
Excursion 190 9.60 0.95 7.30 12.80 
mean_precq11 190 69.12 32.92 8.20 194.81 
mean_precq22 189 48.51 40.13 2.57 212.60 
mean_precq33 186 88.32 44.85 16.61 278.62 
mean_tja 171 35.40 2.22 29.93 41.05 

   Notes:  Variable labels and description is provided in the Appendix. 

 

5. Methodology 
 

5.1 Brief Survey on Existing Methodologies 

 

Several methodologies have been used within the existing literature to explain (and/or predict) the 

main factors of fire risk. The choice of methodology strictly depends on the objective of the study, 

which can either be that of predicting future fire incidences or explaining the variation of the 

dependent variable. Therefore, it depends on the characteristic of the dependent variable, which can 

be discrete and generally dichotomous, or continuous. If, for example, we refer to fire occurrence 

(yes or no expressed as a 1-0 variable) or ignition index (high ignition and low ignition respectively 

receive the value of 1 and 0),  the dependent variable is a dichotomous one. On the other hand, if we 

refer to the total number of fires in a given period (e.g., year) and in a given region,  the dependent 

variable is a discrete one. Finally, if we consider the total area burnt in km2, the dependent variable 

is a continuous one. 

 

One of the most frequently implemented techniques within fire risk analysis is the binary response 

regression, which takes different specifications according to the behavior of the dependent variable 

(i.e., logistic regression: Martinez et al. 2008 & 2009; Poisson regression: Wotton et al. 2003; 

Poisson, binomial or negative binomial: Venables and Ripley, 1997; Cardille et al. 2001). If its 

variance is greater than the mean, negative binomial regression can offer a better fit, whereas 

Poisson regression is normally used when the variance equals the mean. 

 

Other methodologies use stepwise-multiple linear regressions (i.e., multivariate OLS) when the 

dependent variable is continuous (e.g., Vadrevu et al., 2006).  In most applications, Geographic 

Information Systems software (GIS) is then used to gather information on fire events or visualize  

results through mapping. 
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The use of binary response regressions and of stepwise multiple linear regressions does not prevent 

the researcher from incurring  problems of biasedness and inconsistency of the estimates due to 

unobserved heterogeneity across regions/areas, which are not accounted for in the analysis (Greene, 

2008). The spatial heterogeneity might rise due to a lack of structural stability or homogeneity of 

unit observation across space. Supposedly, Italian regions are heterogeneous in terms of cultural 

differences (Naveh, 1995), different land cover types (Bajocco and Ricotta, 2008), different law 

enforcement, and the presence of local organizations. When this is the case, the fixed or random 

effects models should be used in the presence of panel data.10  

 

A different methodology recently proposed consists in the classification and regression trees 

approach (CRT) in which the full model can be used without loss of any exogenous variables. CRT 

explains the variation of the categorical or numerical dependent variable with respect to explanatory 

variables that can include categorical and numerical data sets (De’ath and Fabricius, 2000). This 

approach offers various advantages and can either complement or be alternative to other statistical 

techniques, such as multiple regression, analysis of variance, logistic regression, and log-linear 

models. Unlike parametric multivariate analysis, CRT is not sensitive to strong correlations among 

explanatory variables (i.e., multicollinearity). For instance, Martinez et al. (2009) and Vadrevu et al. 

(2006) use a logit and multivariate OLS regressions respectively, in which a variable selection 

process is required to avoid potential multicollinearity problems among the explanatory variables 

prior to regressions. However, all exogenous variables could be used with the CRT analysis even 

though some of them are highly correlated (see De’ath and Fabricius for further information on the 

advantages of using the CRT approach). This methodology has recently been implemented by 

Sturtevant and Cleland (2007) to individuate the main exogenous determinants of forest fires in 

northern Wisconsin between 1985 and 2000. They classify the dependent variable according to 

different intensities of fire events. The relative importance of the different explanatory variables 

expresses the extent to which a specific variable is able to improve the model, namely to decrease 

the misclassification of forest fires or forest intensities for a given split, represented by their 

inclusion into the wrong groups (Atkinson and Therneau, 2000).  

 

While there is a variety of cross sectional analyses investigating forest fire events, according to our 

knowledge, there are very few articles providing a panel data specification. Although Vadrevu et al. 

(2006) attempt to head towards this direction by using several years of data, they do not fully 

exploit the advantages of a panel data approach given their use of yearly data in a cross-sectional 
                                                
10 See, e.g., Kousky and Olmstead (2010) as well as Reetz and Brummer (2011), for land use studies where binary 
response regressions include fixed and random effects to capture the unobserved heterogeneity across state/region. 
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fashion. A panel approach has been offered by Pazienza and Beraldo (2004), which examine the 

effects of forestry legislation on the frequency of fires in southern Italy (National Park of Gargano). 

However, they only focus on the southern part of Italy and account for very few socio-economic 

variables (unemployment rate, number of civil and industrial vehicles), disregarding many time-

variant factors and totally neglecting weather patterns. By looking at municipalities, they find a low 

level of heterogeneity across them suggesting the use of pooled OLS regression estimation 

methods. Gonzalez (2007) analyzes the potential link between house pricing and the population 

density for the regions of Spain to explain the potential link between the house pricing and the fire 

events after accounting for the region and year fixed effects. Dogandjieva (2008), on the other hand, 
examines the relationship between land, wheat, and timber prices and forest fire incidences in four 
countries: Spain, Greece, Italy, and Bulgaria. It is found that the fixed effects estimation yields 
mixed results, confirming the existence of a link between profit motives and forest fires. Both in 

Dogandjieva (2008) and Gonzalez (2007), the majority of the time varying effects were excluded 

from their studies, potentially causing omitted variable bias.  

 

5.2 Theoretical Framework 

 

Aiming to overcome some of the estimation problems described in section 5.1, we propose a panel 

data approach to investigate the influence of both socio-economic and weather patterns on fire 

occurrence in Italian forests during the last decade. This approach allows us to capture not only the 

dynamics but also the potential changes in the relative importance of such driving factors of fire 

occurrences.  

 

Both fixed and random effects models are used to account for the unobserved heterogeneity across 

regions and, most importantly, to obtain unbiased and consistent estimates for the time-varying 

explanatory variables. As explained in Wooldridge (2002), the fixed effects can be performed either 

by i) adding region and year dummies to the regressions (least squares dummy variable regression, 

or LSDV); ii) transforming variables by subtracting the regional average from both the dependent 

and independent variables (entity demeaned OLS regression). Given that these two approaches lead 

to the same coefficients - the entity demeaned OLS regression is identical to within-region 

estimation (Baltagi, 2008) - we choose to use the second one (equation 3) not to reduce the 

available degrees of freedom.  
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Specifically, a linear panel-data one-way model is employed to capture either the unobserved 

regional or time effects in the error term (time effects are tested by adding year dummies in the 

fixed and random effect models). This takes the following form: 

 

itiitmmit uXy ++= µβ   where { }Tt ,...,2,1∈ , i = 1,…, N;  m= 1,…,K    (1) 

 

In (1), ity  is our dependent variable (either the natural logarithm of the total number of fire events, 

or the natural logarithm of the total area burnt in km2 in a given region i, in a given time period t); 

itmX  is a vector of explanatory variables including both socio-economic and climatic factors;11 iµ  

the unobserved individual region effects; uit the idiosyncratic errors changing in time. mβ  are the 

parameters to be estimated either with fixed or random effects panel data specifications depending 

on the relation between iµ  and itmX . Indeed, while fixed effect specification allows a correlation 

between those two (Cov(Xitm, iµ ) ≠ 0), random effects techniques assumes independence (Cov(Xitm, 

iµ ) = 0).  

 

If iµ  and itmX  are correlated, coefficients can be consistently estimated by a regression on the 

within transformed data (equation 2), resulting from the difference between equation (1) and the 

between transformed data:12  

 

ititmmitiitimitmmiit uXyuuXXyy  +==−+−=− ββ )(       (2)
    

 

where :
 

• ∑
=

=
T

t
iti yy

1

, ∑
=

=
T

t
itmim XX

1

 for each m = 1,2…,K  

• ∑
=

=
T

t
iti uu

1

 

 

                                                
11  Appendix 1 offers a detailed description of all the Xit variables used in our regressions and their sources. Also, it 
reports whether those variables are used in the final model, or just as controls and therefore excluded from the final 
model for statistical reasons.	  
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Therefore, the Fixed Effect estimators (FE), FE
mβ̂ , can be obtained by using pooled OLS regression 

of y  on X . 

 

However, if iµ  are uncorrelated with the itmX  then FE
mβ̂  are inefficient and coefficients should be 

estimated with random effects estimators ( RE
mβ̂ ).This is possible by applying the feasible feasible 

Generalized Least Squares method (GLS) or Random Effects model (RE) as reported below 

(Greene, 2008): 

 

itiitmmit uvXy +++= βα
    

           (3) 

 

where α  is the common intercept and iv  are assumed to be random processes.  

 

Given that the relation between iµ  and itmX  is not known a priori we use the Hausman 

specification test (Hausman, 1978) to test the correctness of the fixed effects assumptions and the 

Lagrange Multiplier test or LM test (Breusch and Pagan, 1980), is conducted to detect the presence 

of random effects. 

 

Given the panel-data nature of our analysis, one of the main issues to be checked is the existence of 

an autoregressive (AR) process in the residuals. We test the presence of serial correlation 

performing a Wooldridge test (Wooldridge, 2002). Relying on its results we include AR(1) 

disturbances in both the RE and FE models. In order to test if region-specific errors are independent 

across regions, we further run the Pesaran cross section test (Pesaran, 2004) and find no 

dependence.  

 

For each of the two dependent variables (fire frequency or fire size in logarithmic form), we 

estimate the model considering first all the Italian regions together (2 unrestricted model), and then 

separating Italy into north, center , and south (3 region-specific models), (Table 8). In doing so, we 

maintain the regressors constant on the right-hand side, although we then eliminate the  variables 

resulting not statistically significant in each of the regional model. Additionally, for each of the two 

sets, results are reported for pooled OLS, FE, and RE models in which year dummies have been 

added to capture the possible time-specific shocks, common to all the regions (e.g., a policy that is 

effective over the entire Italian peninsula).  
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Table 8. Estimation Techniques 

  
  
  

Dependent variable 
Estimations presented Fire 

Frequency 
Fire  
Size 

Geografical 
aggregation 

Unrestricted 
Model Italy X x Pooled OLS, RE, FE, AR(1) 

 
Region-
specific 
Models 

North X x Pooled OLS, RE, FE 
Centre X x Pooled OLS, RE, FE 
South X x Pooled OLS, RE, FE 

Notes: In bold the estimation techniques finally chosen 
 

6 Empirical Findings: Unrestricted or Full-sample Model 

We initially analyze the full sample (unrestricted model) for both dependent variables. Related 

results, for each dependent variable, are reported in Table 9 and Table 10 in which pooled OLS 

(column 2), FE (column 3), and RE (column 4) approaches are compared.  

 

6.1 Unrestricted Model & Logarithm of the Number of Fire Events 

as Dependent Variable 

 

Testing jointly for fixed and random effects we find the existence of regional fixed effects rather 

than a year effect for the FE model; year dummies are jointly significant for all other specifications 

in Table 9. However, from the Hausman test it results that the existing unobservable regional 

heterogeneity is not correlated with explanatory variables, suggesting the use of a RE model 

(column 4). To support the choice of such specification we conducted a Breusch Pagan LM test 

which confirms the presence of random effects. From the Wooldrige test we acknowledge the 

existence of an AR (1) serial correlation in residuals. Hence, we chose a random effect generalized 

least squares (RE-GLS) estimator with AR(1) disturbances to correct for it (column 5).13  

 

Results show that increasing railway density by 1% raises the total number of fire events by 0.8% 

across regions and time. Consistent with Cardille et al. (2001) and Martinez et al. (2009), we find 

that railway density puts pressure on wild lands increasing the number of fire events. On the other 

hand, a percentage increase in relative poverty fosters fire frequency by 4.18%. In accordance with 

                                                
13 Although the literature does not provide any specific critical value, the Baltagi-Wu LBI statistic detects a serious 
serial correlation when it is far below 2 (see Baltagi and Wu, 1999). As reported in Table 9, this statistic is 1.99, very 
close to 2 indicating that auto-correlated residuals (fourth column) disappear when an AR(1) term is included in the 
regression (column 5).   



 20 

de Torres Curth et al. (2012), although in opposition to Leone et al. (2002) and Martinez et al. 

(2009), we report that the fire events are higher in the areas where poverty levels are high. Similarly 

to Leone et al. (2002) and Martinez et al. (2009) we conclude that touristic flows impact positively 

the number of forest fires: 1% increase in tourist arrivals per km2 leads to 0.24% raise in the total 

number of fire events. 

 

Finally, we find that depending on the extent to which land is used, intensification in the agriculture 

activity either puts pressure on, or generates protection against, forest fires (Chuvieco et al., 1999; 

Leone et al. 2002; Vigilante et al. 2004; Pazienza and Beraldo, 2004; Martinez et al., 2009). For 

example, a percentage increase in the number of people working in the agriculture sector has the 

effect of decreasing fire frequency by 11.4%. Nevertheless, grazing activity generates mixed results 

depending on animal species. Specifically, assuming that both bovine and caprine elements per km2 

increase by 1%, the number of fires respectively decreases by 0.18% and increases by 1.16%. We 

are not aware of similar empirical evidence from other studies. In fact, despite the fact that livestock 

intensity has been considered a major driver of forest fires (Chuvieco et al. 1999; Leone et al. 2002; 

Martinez et al., 2009), to our knowledge there is  no separate analysis on different livestock 

compositions. This highlights the need of additional investigation useful to build tailored fire-

containment policies.  

 

As for climatic factors, the only variable found to be significant is the average number of 

consecutive hot days in a year. Indeed, a 1% increase in this variable leads to a 0.24% increase in 

the yearly frequency of forest fires. This finding is in line with other studies supposing that drier 

seasons boost fuel flammability, thereby fostering the likelihood of observing fire events (Pinol et 

al., 1998; Pausas, 2004; Westerling et al., 2006). Both temperature and precipitation do not seem to 

explain the variation in the total number of forest fires.  

 

Overall, forest fire variation across Italian regions is mostly driven by socio-economic factors rather 

than by climatic ones. Using the best specification, according to the empirical evidence (RE model), 

these variables altogether are capable of explaining 81% of the total variability in forest fire 

frequency.  
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Table 9. Full Sample Specification (Dependent variable: Logarithm of total fire events) 
VARIABLES Pooled OLS Fixed effects Random effects Random effects-AR1 
lnpop_den -0.4303 -4.5695 -0.2433 -0.3273 
 (0.323) (3.425) (0.343) (0.257) 
lnrail_den 0.8341*** 0.2740 0.7581*** 0.8083*** 
 (0.182) (2.969) (0.241) (0.163) 
rela_pov 0.0313 0.0506** 0.0436** 0.0418** 
 (0.019) (0.019) (0.018) (0.017) 
Lnbovine -0.2937*** -0.1167*** -0.1488* -0.1774** 
 (0.061) (0.039) (0.077) (0.080) 
Lncaprine 1.2471*** -1.7234 1.0869*** 1.1569*** 
 (0.163) (1.115) (0.255) (0.184) 
p_ter_deg 0.1644* -0.1472** 0.0183 0.1200 
 (0.080) (0.068) (0.089) (0.077) 
p_emp_agri -0.1161** -0.1449** -0.1390*** -0.1142** 
 (0.047) (0.069) (0.054) (0.049) 
extor_1000 6.6286** -1.5464 1.4671 2.9137 
 (3.087) (2.299) (2.396) (2.422) 
Lnarrivals 0.2748* 0.2093** 0.2215* 0.2491** 
 (0.138) (0.085) (0.122) (0.110) 
Lnnhot 0.3297*** 0.2563*** 0.2740*** 0.2460*** 
 (0.084) (0.077) (0.083) (0.083) 
Excursion -0.0388 0.1235 -0.0535 -0.0602 
 (0.114) (0.083) (0.104) (0.088) 
mean_precq11 0.0004 -0.0005 0.0015 0.0010 
 (0.001) (0.001) (0.002) (0.002) 
mean_precq22 -0.0027 0.0007 -0.0009 -0.0012 
 (0.002) (0.001) (0.001) (0.001) 
mean_precq33 -0.0006 0.0008 0.0008 0.0009 
 (0.001) (0.001) (0.001) (0.001) 
mean_tja -0.0886* 0.0447 -0.0138 -0.0304 
 (0.042) (0.043) (0.044) (0.043) 
Constant 2.2322  1.1856 0.7700 
 (2.682)  (2.539) (2.287) 
     
Observations 145 145 145 145 
R-squared 
R2-within 
R2-between 
R2-overall 

0.825  
0.5391 
0.2465 
0.1495 

 
0.5214 
0.8457 
0.7781 

 
0.4994 
0.8859 
0.8075 

Year effects YES NO YES YES 
Region effects 
Number of n 
 
 
 
 
Other tests for Panel 
 

 
19 

YES 
19 

 
 

             
             19 

 
 

 
19 

 
 
Rho-AR                   0.22 
Baltagi-Wu LBI      1.99 

Hausman (p-value)    0.99 
Breusch Pagan           84.16*** 
Wooldridge                87.748*** 
(p-value)                      (0.000) 
 Pesaran’s CD            0.1515 

Robust standard errors in parentheses, where  *** p<0.01, ** p<0.05, * p<0.1  
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6.2 Unrestricted Model & Logarithm of the Total Area Burnt as 
Dependent Variable 

 

Table 10 reports results achieved by maintaining regressors unvaried, but using the natural 

logarithm of the total area burnt as dependent variable. In this case we find that the year effects are 

jointly significant in the pooled OLS, FE and RE estimations (columns 2 to 4 respectively). The 

Hausman test results suggest that the unobserved region specific effects embody elements, which 

are correlated with regressors. As a result, the FE model is the model of choice. This is in contrast  

with conclusions previously drawn using the alternative dependent variable. A similarity with the 

previous model relates to an AR (1) serial correlation in residuals resulting from the Wooldridge 

test. As a consequence, we propose FE estimates with AR(1) disturbances in column 5.  

 

Similar to the previous model, railway and tourist density positively impact the expansion of the 

area burnt. Specifically, the railway density shows an impact, which is 5-times larger on this 

dependent variable than on fire frequency. Conversely to previous results, the use of land here, 

seems to generate a mono-directional impact, given that the higher the percentage of people 

working in agriculture, the amount of area covered by fire is smaller. Therefore, in  this case more 

intense land management translates into a greater containment of fire propagation. Although the 

animal presence is less impacting than above, we find an interesting difference. A bigger bovine 

population reduces fire frequency but enlarges the total area burnt. Therefore, even though the 

presence of bovine elements leads to fewer fire events, if the fire takes place, we would experience 

an increase in the area burnt. 

 

In opposition to the first model, population density plays a role in explaining the total area burnt. Its 

1% increase drops the fire expansion by 7.3%. This could be due to a greater amount of land used 

for population settlement, which reduces the availability and continuity of fuel (Syphard et al., 

2007) and leaves limited area for forests and fire propagation. 

 

What deserves specific attention is the fact that while weather patterns do not explain variability in 

the number of fires, they play an important role in influencing the size of land burnt by fire events. 

As before, we report that a percentage increase in the average number of consecutive hot days per 

year boosts the total area burnt by 0.38%. In addition, an increase in temperature from January to 

September positively impacts fire extension, although with low statistical significance. 

Nevertheless, restricting the analysis to June, July, and August temperature levels notably 
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strengthens the statistical significance. Specifically, an additional degree Celsius in the average 

temperature in this period is associated with an 18.26% increase in the total area burnt.14 

Additionally, as one could have expected, an increase of one milliliter in the monthly average 

precipitation between January-April and May-August decreases the total area burnt by 0.41% and 

0.33% respectively. These findings are consistent with the branch of literature which supports the 

relevance of precipitation rates regarding  fire size (Pausas 2004; Westerling et al. 2006). 

 

Overall, our findings support Sturtevant and Clelabd (2007) and Pinol et al., (1998) statements that 

although the socio-economic factors are determinants of the fire frequency, larger fire events are 

mostly the consequence of biophysical and climatic factors. Concluding, with this dependent-

variable specification the within-region variation of the socio-economic and climatic regressors 

explains 78% of the variability in the total area burnt.  

 

Table 10. Full Sample Specification (Dependent variable: Logarithm of the total area burnt) 
VARIABLES Pooled OLS Fixed effects Random effects Fixed effects – AR1 
lnpop_den -0.4063 -9.5941* -0.4063 -7.3948** 
 (0.425) (5.289) (0.273) (3.438) 
lnrail_den 0.8417*** 2.0803 0.8417*** 5.8674* 
 (0.166) (4.137) (0.144) (3.327) 
rela_pov 0.0483 0.0637** 0.0483** 0.0163 
 (0.046) (0.027) (0.023) (0.027) 
Lnbovine -0.2780** 0.0803 -0.2780** 0.1794* 
 (0.115) (0.112) (0.109) (0.094) 
Lncaprine 1.5444*** -2.2080 1.5444*** 0.2286 
 (0.262) (1.570) (0.171) (2.278) 
p_ter_deg 0.1963 -0.1838 0.1963** -0.2203 
 (0.125) (0.153) (0.081) (0.142) 
p_emp_agri -0.1777* -0.2886*** -0.1777*** -0.2223** 
 (0.091) (0.097) (0.054) (0.091) 
extor_1000 8.8122 -0.7924 8.8122*** -3.9004 
 (5.220) (3.609) (3.279) (3.397) 
Lnarrivals 0.2953 0.2609 0.2953** 0.6514** 
 (0.246) (0.209) (0.132) (0.302) 
Lnnhot 0.3374*** 0.4304*** 0.3374** 0.3785*** 
 (0.079) (0.117) (0.144) (0.101) 
Excursion 0.0191 -0.1610 0.0191 -0.0321 
 (0.119) (0.180) (0.095) (0.160) 
mean_precq11 0.0011 0.0035 0.0011 -0.0041* 
 (0.002) (0.002) (0.003) (0.002) 
mean_precq22 -0.0019 0.0018 -0.0019 -0.0033* 
 (0.003) (0.002) (0.002) (0.002) 
mean_precq33 -0.0010 0.0004 -0.0010 0.0001 
 (0.002) (0.001) (0.002) (0.001) 
mean_tja 0.0163 0.1433** 0.0163 0.1826*** 

                                                
14 We explored the influence of possible interactions between climatic factors constructing variables such as the 
combination of precipitation and temperature, and found no significant results. We also checked the impacts of lagged 
climatic variables on forest fires and find no significant effect. The same can be concluded for non-linear weather 
patterns. Results are available upon request.    
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 (0.082) (0.064) (0.069) (0.057) 
Constant -5.4141  -5.4141*  
 (4.968)  (3.132)  
     
Observations 145 145 145 126 
R-squared 
R2-within 
R2-between 
R2-overall 

0.800  
0.6776 
0.1236 
0.0525 

 
0.5225 
0.9041 
0.7996 

 
0.7819 
0.0003 
0.0099 

Year effects YES YES YES YES 
Region effects 
Number of n 

 
19 

YES 
19 

 
19 

    

YES 
19 

Rho-AR                 0.09 
Baltagi-Wu  LBI   2.15 

Other tests for Panel  
 
 
 

                                          Hausman (p-value)    0.0000*** 
                                          Breusch Pagan           44.18*** 
                                          Wooldridge                9.243*** 

(p-value)                   (0.007) 
Pesaran’s CD           0.4880 

Robust standard errors in parentheses, where  *** p<0.01, ** p<0.05, * p<0.1 

 
 

7 Empirical Findings: Regional Models 
 

There are convincing reasons to think that regions located in different geographical areas in Italy 

show specific fires patterns. This can be derived, for example, by simply observing the variability in 

both types of dependent variables. At the same time, we must recall that regional effects have been 

found to be significant in previous model specifications (see results in Table 9 and 10 on region 

effects). In order to check the existence of differences in estimated parameters for different 

geographical regions, we perform a likelihood ratio (LR) test comparing the full sample 

(unrestricted model) with the sub-samples of the northern, central, and southern regions of Italy 

(region-specific models).15 The documented systematic difference between individual subgroup 

models and the full sample models (Table 11 and 12) supports the need of performing estimates 

separately for the north, center, and south of Italy.16 Using two dependent variables for each of the 

subgroups, we run 6 regressions (2x3). 

 

 

 

 

                                                
15 We used the same regressors, which are  in the unrestricted model, meaning that the likelihood ratio has a degree of 
freedom of k=15 
16 Note that the log-likelihoods for the full sample and the sub-samples are obtained with the pooled random effects 
model by using the maximum-likelihood estimator. The degrees of freedom for the likelihood ratio test is the number of 
parameters (variables) used for all regressions, k=15. 
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Table 11. Dependent variable: Total number of events (LR test) 
 Full sample North Centre South 
Observations 145 37 47 61 
Number of n 19 5 6 8 
Log likelihood -90.99 -10.79 -2.01 -18.96 
Likelihood Ratio  2

LRχ =-2[-90.99-(-49.85)]=82.28, critical value: 2
01.0,15χ =30.58 

 

Table 12. Dependent variable: Total size of the area burnt (LR test) 
 Full sample North Centre South 
Observations 145 37 47 61 
Number of n 19 5 6 8 
Log likelihood -150.1 -18.26 -27.00 -40.46 
Likelihood Ratio  2

LRχ =-2[-150.1-(-85.72)]=128.76, critical value: 2
01.0,15χ =30.58 

 

In the following tables we report results for the three sub-geographical samples, for the two 

dependent variables. Only statistically significant variables are reported. Remaining variables, 

although used as controls, have been discarded from the three models by following the backward 

elimination technique (for further discussion on the backward elimination procedure see Agresti and 

Finlay, 1997; Menard, 2002). According to this method, starting from all the variables in the model 

the non-significant ones will be sequentially removed. In particular, by looking at the variance 

inflation factor (VIF) and the Pearson correlation coefficient, we eliminate the variables, which are 

both insignificant  and correlated with the significant variables.17 

 

We are aware that, although widely used within applied econometrics, this approach may be 

challenged by statisticians. They would claim that a t-test resulting lower than a critical value, may 

be due to two different reasons: either the value of the coefficient is actually 0 or the empirical 

evidence is not enough to reject the null hypothesis (i.e., the hypothesis is not “accepted”, yet “not 

rejected”). If we consider the second case, eliminating the variables retained not statistically 

significant, would entail the risk of producing distorted estimates. 

 

 In light of this we argue that maintaining all the regressors in place would have, on the one hand, 

avoided the aforementioned problems, yet on the other hand, would have produced other 

inconveniences. Specifically, including also variables whose coefficients result equal to 0 reduces 

the estimation accuracy, since more degrees of freedom than what is strictly needed are used. This 

problem is even more relevant when the number of observations is not as high as the number of 
                                                
17 Hair et al. (1995) and Kennedy (1992) suggest that the variance inflation factor (VIF) greater than 10 causes the 
serious multicollinearity problem. In related literature, Martinez et al., (2009) and Vadrevu et al. (2006) conduct a 
variable selection process to avoid potential multicollinearity among the explanatory variables, e.g., the Pearson 
correlation coefficient and variance inflation factor.      
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explanatory variables whose coefficients have to be estimated. This is precisely our case, given that 

disaggregating the full sample of regions fractionates the total number of observations into three 

groups. In this respect, to decide how big a sample size should be, relative to the number of 

observations, the literature offers a ratio measure, which compares the sample size (nominator) with 

the number of free parameters (denominator). Tanaka (1987) suggests 20 as the rule of thumb while 

Bentler and Chou (1987) propose the ratio 5:1. Using the second source as a reference (the first 

appears unrealistically high), our ratios show that we are at the border of sufficiency in terms of 

sample size. Therefore, we chose to follow the backward elimination approach rather than incurring 

different, yet significant problems. 

 

7.1 Regional Models & Logarithm of the Number of Fire Events as 

Dependent Variable 

 

We develop the same estimation methods (pooled OLS, FE, and RE) to check which model is the 

best specification for the sub-sample models. When the dependent variable is the natural logarithm 

of the total number of events from the Hausman and Breusch Pagan tests, the pooled OLS is found 

to be the best specification for all geographical aggregations.18 Results are shown in Table 13 where 

we only report the significant variables. These regressions, therefore, include the variables, which 

remain after the backward elimination technique mentioned in the previous section.  

 

A common result across regional models, is that both railway density and the presence of caprine 

elements put pressure on forest land. Other factors influence  fire frequency in an expected direction 

(Table 13). In particular, the presence of bovine animals, the level of education (as reported in de 

Torres Curth et al., 2012), tourism, and precipitation levels are relevant for the northern region; 

education and temperature for the center; and precipitation levels as well as extortion activity for 

the south. Therefore, in  southern regions illegal activities represent an additional driver, providing  

the opportunity to create  firefighting jobs or gain land for agriculture, or pasture, which are retained 

more valuable activities (Leone et al., 2002). 

 

 

                                                
18	  The Hausman test suggests using the random effects estimation, meaning that the unobserved heterogeneity across 
regions is not correlated with explanatory variables.  However, a Breusch Pagan LM test suggests that we cannot reject 
the null hypothesis that the variance of residuals across regions is  zero at 10% level of significance. This entails that 
there is no significant difference across regions within a given geographical classification. 
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Table 13. OLS Dependent variable: ln (total number of events) 
VARIABLES North        Centre South 
lnrail_den 1.0019*** 

(0.123) 
1.3390*** 

(0.179) 
0.7541*** 

(0.084) 
Lnbovine -0.1147* 

(0.045) 
  

Lncaprine 0.9603*** 
(0.111) 

3.0181*** 
(0.420) 

1.1120*** 
(0.086) 

p_ter_deg -0.2070*** 
(0.030) 

-0.1015* 
(0.040) 

 

Lnarrivals -0.4092** 
(0.144) 

  

extor_1000 
 

  3.9801*** 
(0.726) 

lnnhot 
 

 0.6132*** 
(0.093) 

 

mean_precq11 -0.0113** 
(0.003) 

  

mean_precq22 
 

  -0.0142*** 
(0.002) 

mean_precq33 -0.0074* 
(0.003) 

  

Constant 4.0503* 
(1.595) 

-3.1483** 
(1.021) 

0.9360** 
(0.379) 

Observations 37 54 70 
R-squared 0.830 0.807 0.898 
Year effects NO NO YES 
Robust standard errors in parentheses, where  *** p<0.01, ** p<0.05, * p<0.1 

 

7.2 Regional Models & Logarithm of the Total Area Burnt as 

Dependent Variable 

 

We conduct similar regressions and tests as in section 7.1 when the dependent variable is the natural 

logarithm of the total area burnt and regions are grouped into north, center and south. Once more, 

for all the geographical aggregations we find that the best specification is the pooled OLS. Given 

that within geographical groups no unobserved heterogeneity is found, the pooled regressions show 

similar results for both dependent-variables models (Table 14).19  

For northern regions the statistically significant regressors are mostly the same. There is only one  

additional significant variable: a percent increase in the bovine elements per km2 drops the fire 

frequency by 0.11%. Therefore, we can conclude that our results on the northern  area are robust 

and not sensitive to a change in the dependent variable. 

                                                
19 The Pearson correlation coefficients between the natural logarithm of total number of events and the natural 
logarithm of total number of events are 0.87, 0.88 and 0.88 for the northern, central and southern geographical 
specifications respectively.      
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Despite the differences in magnitude we can reach the same conclusion for the central part of Italy. 

Specifically, climatic factors slightly differ in the two models: a percent raise in the average number 

of consecutive hot days increases the total number of events by 0.61%. Nevertheless, a  one-

millimeter increase in the average precipitation rate between May and August is associated with 

around a 1% decrease in the total area burnt. Also, an additional degree Celsius in the average 

temperature between June and August translates to  a 32.79% rise  in the total area burnt.  

 

Finally, for the southern part of Italy illegal activities explain the fire frequency, yet they have no 

impact on the area burnt. In contrast to the northern area, touristic flows positively affect the 

number of events suggesting a possibly insufficient risk management and forestland protection, or a 

law-enforcement problem. As for climatic variables, precipitation influences the area burnt with 

expected signs.  

 

Table 14. OLS Dependent variable: ln (total area burnt) 
VARIABLES North Centre South 

lnrail_den 1.2736*** 
(0.192) 

1.1389*** 
(0.092) 

0.8627*** 
(0.104) 

Lnbovine  
 

-0.4423*** 
(0.062) 

-0.3171* 
(0.138) 

Lncaprine 1.0674*** 
(0.192) 

4.3214*** 
(0.232) 

1.1036*** 
(0.164) 

p_ter_deg -0.3316* 
(0.120) 

-0.2793*** 
(0.063) 

 

lnarrivals -0.6235** 
(0.177) 

 0.1773* 
(0.088) 

mean_precq11 -0.0118** 
(0.003) 

 -0.0079** 
(0.003) 

mean_precq22 
 

 -0.0135** 
(0.004) 

-0.0185** 
(0.007) 

mean_precq33 -0.0116*** 
(0.003) 

  

mean_tja 
 

 0.3279*** 
(0.050) 

 

Constant 1.6953 
(1.708) 

-13.5858*** 
(2.548) 

-0.5032 
(0.896) 

Observations 37 54 70 
R-squared 0.851 0.783 0.899 
Year effects NO NO YES 
Robust standard errors in parentheses, where  *** p<0.01, ** p<0.05, * p<0.1 
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8. Concluding Remarks and Discussion 

 

Using panel data techniques we analyze the determinants of forest fires frequency and size for the 

Italian regions during the 2000-2008 period. We first investigate the situation for all the regions 

pulled together. Then, lead by evidence on their heterogeneity, we specify three regional models for 

north, center, and south, according to the incidence of forest fires and their geographical location.  

 

We also investigate two dependent variables in each of the abovementioned models: the number of 

fire events and total km2 of burnt area regressed on both socio-economic and climatic factors. The 

most appropriate regression technique for each model (fixed and random effects, pooled OLS, etc.) 

has been selected through appropriate testing. 

 

Despite the heterogeneity across Italian regions and the existence of locally-specific driving factors, 

some general conclusions and policy implications can be discussed.  

 

First, improving safety in the railway network is expected to have a supportive impact in reducing 

fire events and size throughout Italy. Weather patterns also appear to be important determinants. 

Additionally, the composition of livestock seems to be relevant to address the problem of forest fire. 

In opposition to the negative effect of bovine presence reported in some cases, caprine grazing is an 

element of pressure on forestland, from the north to the south. In particular, bovine grazing, which 

has almost no impact on reducing fire frequency, seems to help in containing the spread of fire. This 

conclusion, normally referred to as the “grazing reduces blazing” argument, is well supported by the 

literature. Indeed, it is claimed that the introduction of livestock in forest areas functions as a natural 

undergrowth eliminator, i.e., prevents fire amplification by removing plant biomass (Whalley, 

2005). A less obvious effect on fire is generated by the presence of caprine animals affecting 

positively both fire frequency and extension. This effect may find its explanation in more than one 

reason. For example, in order to gather minor forests for pasture, shepherds normally introduce non-

native grass increasing fuel loads. Alternatively, they may start small fires to obtain better grazing 

grass. On the other hand, caprine excessive pasture may imply the consumption of the youngest and 

greenest components of vegetation thereby increasing the portion of drier, mature, and dead 

material which is therefore more inflammable (Blasi et al., 2005; Bernetti, 2005). This is especially 

true in the case of a mineral shortage in soil, also resulting from adverse weather conditions. In fact, 

this leads animals to strip bark from trees and browse upper branches causing tree deterioration and 

death, increasing, in turn, fire prone materials. Finally, recent studies recognize that the incidence of 
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grazing on fire may depend on vegetation structure, and grazing intensity (e.g., Leonard et al., 

2010). Specifically, in places where part of the vegetation is unpalatable, selective consumption by 

herbivores may increase the proportion of dead fuel and therefore fire occurrence.  

 

Apart from the mentioned ones, the remaining socio-economic conditions result to be more locally 

specific. A good analysis requires regional details. By dividing Italy into north, center, and south we 

find that results from the two dependent-variable specifications are comparable and sometimes 

homogeneous within the same geographical area. For example, increasing education levels 

decreases frequency and intensity of fires in the north and the center. As for the south, where the 

worst Italian burning situation takes place, we acknowledge i) illegal activities as a cause of fire 

frequency and ii) tourism presence as an element of explanation for the variation in fire size.  

 

 In sum, our results suggest that given this concept of “locality” for a driving factor, an accurate and 

ex-ante definition of fire risk in a specific area becomes crucial. This would help implementing an 

ad hoc weather forecasting, taking into account seasonality issues, and developing a tailored 

monitoring and prevention plan. This process entails the consideration of past policies and related 

results to design more effective actions in the future.  

 

Furthermore, land management, and in particular, grazing and fuel control could concretely contain 

the incidence of forest fires. Further research is needed to shed light on the unknown impact of 

different grazing levels on fire. Clarifying this relation would make a valuable contribution to the 

understanding of forest conservation in Italy.  
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Appendix 1. List of variables with relative description 

                                                
20JRC: Joint Research Centre (http://effis.jrc.ec.europa.eu/); CFS: Corpo Forestale dello Stato 
(http://www3.corpoforestale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/3888) 
21 See ArcGIS maps at http://www.mapcruzin.com/free-italy-arcgis-maps-shapefiles.htm 
22 According to ISTAT “A household is defined as poor in relative terms if its consumption expenditure is equal to or 
below the relative poverty line, which is calculated on the basis of data from the household consumption survey. For a 
two-member household it is the average monthly expenditure per person […].” (More on this at: http://noi-
italia2012en.istat.it/index.php?id=7&user_100ind_pi1%5Bid_pagina%5D=107&cHash=39abf23d62a1111bd4edefe150
d82ec7) 
23 Tertiary education: Bachelor Degree and PhD 
24 The CRA-CMA is the Italian Consiglio per la Ricerca in Agricoltura - Unità per la Climatologia e la Meteorologia 
applicate all'agricoltura (More on this at: http://old.politicheagricole.it/ucea/forniture/index3.htm) 
25 ISTAT elaboration from CRA-CMA data. 

Var. name Description Derivation Source of data Use Var. 
type 

lnfn_tot Number of fire events ln (N of fires events) JRC and CFS20 Used for main 
model 

DV1 

lnburntot Fire extension ln (Size of land burnt in km2) JRC and CFS Used for main 
model 

DV2 

lnpop_den Population density ln (Total population/regional area 
in km2) 

Elaboration from 
ISTAT 

Used for main 
model 

SED 

lnrail_den Railway density ln (km of regional railways/ 
regional area in km2) 

ArcGIS maps21 Used for main 
model 

SED 

rela_pov Relative poverty Average €/month ISTAT22 Used for main 
model 

SED 

lnbovine Bovine elements ln (Total bovine 
elements/regional area in km2) 

Elaboration from 
ISTAT 

Used for main 
model 

SED 

lncaprine Caprine elements ln (Total caprine 
elements/regional area in km2) 

Elaboration from 
ISTAT 

Used for main 
model 

SED 

p_ter_deg % of total population holding 
tertiary degree23 

(Population with tertiary 
degree/Total population)*100 

Elaboration from 
ISTAT 

Used for main 
model 

SED 

p_emp_agri % Employment in the 
agricultural sector  

(Number of people employed in 
the agricultural sector/Total 
number of employees)*100 

Elaboration from 
ISTAT 

Used for main 
model 

SED 

extor_1000 Number of extortions every 
1000 inhabitants 

 (Total number of extortions in 
the region/Total population in the 
region)*1000 

Elaboration from 
ISTAT 

Used for main 
model 

SED 

lnarrivals Number of tourist arrivals ln (Total number of tourist 
arrivals/ regional area in km2) 

Elaboration from 
ISTAT 

Used for main 
model 

SED 

lnnhot Annual average number of hot 
days 

ln (Annual average number of hot 
days) 

Elaboration from 
CRA-CMA24 

Used for main 
model 

GPD 

excursion Annual average of 
temperature excursion 

Annual average of temperature 
excursion 

ISTAT 
elaboration25 

Used for main 
model 

GPD 

mean_precq11 Monthly average precipitation 
of the first 4 months of the 
year 

(Total precipitation between 
January and April in millimetres) 
/4 

Elaboration from 
CRA-CMA 

Used for main 
model 

GPD 

mean_precq22 Monthly average precipitation 
of the second 4 months year 

(Total precipitation between May 
and August in millimetres) /4 

Elaboration from 
CRA-CMA 

Used for main 
model 

GPD 

mean_precq33 Monthly average precipitation 
of the last 4 months year 

(Total precipitation between 
September and December in 
millimetres) /4 

Elaboration from 
CRA-CMA 

Used for main 
model 

GPD 

mean_tja Monthly average temperature 
from June to August 

(Total average temperature in 
June, July and August) /3 

Elaboration from 
CRA-CMA 

Used for main 
model 

GPD 

lnpop_den_f Female population density ln (Total female 
population/regional area in km2) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

lnpop_den_m Male population density ln (Total male 
population/regional area in km2) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

lncow_bufa Cow and buffalo elements ln (Total cow and buffalo 
elements/regional area in km2) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

lnpigs Pig elements ln(Total pig elements/regional 
area in km2) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

lnovine Ovine elements ln (Total ovine elements/regional 
area in km2) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

lnequidae Equidae elements ln(Total equidae 
elements/regional area in km2) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

p_emp_ind % Employment in the 
industry sector 

(Number of people employed in 
the industry sector/Total number 
of employees)*100 

Elaboration from 
ISTAT 

Additional 
control 

SED 
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26 For more detail on this see http://www.istat.it/agricoltura/datiagri/foreste/forgloss.html	  
27 ISTAT elaboration from CRA-CMA data (Weighted average calculated for each elaboration considering the 
extension of the individual regions for temperature and precipitation). 

p_emp_ser % Employment in the service 
sector 

(Number of people employed in 
the service sector/Total number 
of employees)*100 

Elaboration from 
ISTAT 

Additional 
control 

SED 

unemp_tot Total unemployment rate (Total number of people 
unemployed at a region/Total 
labour force at the region)*100 

Elaboration from 
ISTAT 

Additional 
control 

SED 

unemp_f Female unemployment rate (Total number of female 
unemployed at a region/Female 
labour force at the region)*100 

Elaboration from 
ISTAT 

Additional 
control 

SED 

unemp_m Male unemployment rate (Total number of male 
unemployed at a region/Male 
labour force at the region)*100 

Elaboration from 
ISTAT 

Additional 
control 

SED 

ill_asso_1000 Number of illegal associations 
every 1000 inhabitants 

 (Total number of illegal 
association in region/Total 
population of the region)*1000 

Elaboration from 
ISTAT 

Additional 
control 

SED 

fraud_1000 Number of frauds every 1000 
inhabitants 

(Total number of frauds in a 
region/Total population of the 
region)*1000 

Elaboration from 
ISTAT 

Additional 
control 

SED 

smug_1000 Number of smuggling every  
1000 inhabitants 

(Total number of smuggling in a 
region/Total population of the 
region)*1000 

Elaboration from 
ISTAT 

Additional 
control 

SED 

crime_1000 Number of crimes every  
1000 inhabitants 

(Total number of crimes in a 
region/Total population of the 
region)*1000 

Elaboration from 
ISTAT26 

Additional 
control 

SED 

Build_price Average price of building logs Average price of building logs 
among different log categories 
(€/m3) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

Peeled_price Average price of log to be 
peeled 

Average price of logs to be 
peeled among different log 
categories (€/m3) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

Veneer_price Average price of veneer logs Average price of veneer log 
among different log categories 
(€/m3) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

Saw_price Average price of saw logs Average price of saw log among 
different log categories (€/m3) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

Pulp_price Average price of pulpwood  
(round and split) 

Average price of pulpwood 
among different categories (€/m3) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

Ind_wood_price Average price of other 
industrial round wood 

Average price of veneer log 
among different log categories 
(€/m3) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

lnnights Number of nights spent by 
tourists  

ln (Total number of nights spent 
by tourists/ regional area in km2) 

Elaboration from 
ISTAT 

Additional 
control 

SED 

T_mean Average annual temperature Average annual temperature for 
region 
 (measured in degrees Celsius) 

ISTAT 
elaboration27 

Additional 
control 

GPD 

T_min Average annual maximum 
temperature 

Average annual maximum 
temperature for region  (measured 
in degrees Celsius) 

ISTAT 
elaboration 

Additional 
control 

GPD 

T_max Average annual minimum 
temperature 

Average annual minimum 
temperature for region  (measured 
in degrees Celsius) 

ISTAT 
elaboration 

Additional 
control 

GPD 

precip Average annual precipitation 
total for regions  

Average annual precipitation total 
for regions measured in 
millimetres 

ISTAT 
elaboration 

Additional 
control 

GPD 

Diff00-09 Relative difference of the 
average total precipitation 
from the mean of the year 
2000-2009  

Relative difference of the average 
total precipitation from the mean 
of the year 2000-2009 (measured 
percentage deviation) 

ISTAT 
elaboration 

Additional 
control 

GPD 

prec_jan  TO 
prec_dec 

Monthly average precipitation 
for January,…, December  

Monthly average precipitation at 
a given region in January, 
February,…, December 

Elaboration from 
CRA-CMA 

Additional 
control 

GPD 

t_jan  TO 
t_dec 

Monthly average temperature 
for January,…, December  

Monthly average temperature at a 
given region in January, 
February,…, December 

Elaboration from 
CRA-CMA 

Additional 
control 

GPD 
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