Published September 30, 2020
| Version v1
Journal article
Restricted
Biosynthesis and tissue-specific partitioning of camphor and eugenol in Ocimum kilimandscharicum
Creators
- 1. ∗ & Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India & Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
Description
Singh, Priyanka, Kalunke, Raviraj M., Shukla, Anurag, Tzfadia, Oren, Thulasiram, Hirekodathakallu V., Giri, Ashok P. (2020): Biosynthesis and tissue-specific partitioning of camphor and eugenol in Ocimum kilimandscharicum. Phytochemistry (112451) 177: 1-11, DOI: 10.1016/j.phytochem.2020.112451, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112451
Files
Linked records
Additional details
Identifiers
- URL
- https://www.checklistbank.org/dataset/264578
- LSID
- urn:lsid:plazi.org:pub:FFAEFFBBFFB7FFFBFFB37C46160EF37E
- URL
- http://publication.plazi.org/id/FFAEFFBBFFB7FFFBFFB37C46160EF37E
References
- Anand, A., Jayaramaiah, R.H., Beedkar, S.D., Singh, P.A., Joshi, R.S., Mulani, F.A., Dholakia, B.B., Punekar, S.A., Gade, W.N., Thulasiram, H.V., Giri, A.P., 2016. Comparative functional characterization of eugenol synthase from four different Ocimum species: implications on eugenol accumulation. Biochim. Biophys. Acta 1864, 1539-1547.
- Clasquin, M.F., Melamud, E., Rabinowitz, J.D., 2012. LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr. Protoc. Bioinformatics. 37, 14 11.1-14.11.23.
- Coley, P.D., 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531-536.
- Coley, P.D., Bryant, J.P., Chapin, F.S., 1985. Resource availability and plant antiherbivore defense. Science 230, 895-899.
- Croteau, R., Karp, F., 1979a. Biosynthesis of monoterpenes: hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis). Arch. Biochem. Biophys. 198, 523-532.
- Croteau, R., Karp, F., 1979b. Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage (Salvia officinalis) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization. Arch. Biochem. Biophys. 198, 512-522.
- Croteau, R., Hooper, C.L., Felton, M., 1978. Biosynthesis of monoterpenes: partial purification and characterization of a bicyclic monoterpenol dehydrogenase from sage (Salvia officinalis). Arch. Biochem. Biophys. 188, 182-193.
- De Groot, C.C., Marcelis, L.F.M., Van den Boogaard, R., Lambers, H., 2001. Growth and dry- mass partitioning in tomato as affected by phosphorus nutrition and light. Plant Cell Environ. 24, 1309-1317.
- De Vos, R.C., Moco, S., Lommen, A., Keurentjes, J.J., Bino, R.J., Hall, R.D., 2007. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2, 778-791.
- Ehlting, J., Mattheus, N., Aeschliman, D.S., Li, E., Hamberger, B., Cullis, I.F., Zhuang, J., Kaneda, M., Mansfield, S.D., Samuels, L., Ritland, K., Ellis, B.E., Bohlmann, J., Douglas, C.J., 2005. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J. 42, 618-640.
- Gang, D.R., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E., Pichersky, E., 2001. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 125, 539-555.
- Gao, Z., Sagi, M., Lips, S.H., 1998. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci. 135, 149-159.
- Gerdes, S., Lerma-Ortiz, C., Frelin, O., Seaver, S.M., Henry, C.S., de Crecy-Lagard, V., Hanson, A.D., 2012. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J. Exp. Bot. 63, 5379-5395.
- Havko, N.E., Major, I.T., Jewell, J.B., Attaran, E., Howe, G.A., 2016. Control of Carbon Assimilation and Partitioning by Jasmonate: an Accounting of Growth-Defense Tradeoffs. Plantshttps://doi.org/10.3390/plants5010007.
- Howles, P.A., Sewalt, V.J., Paiva, N.L., Elkind, Y., Bate, N.J., Lamb, C., Dixon, R.A., 1996. Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol. 112, 1617-1624.
- Ibrahim, M.H., Jaafar, H.Z., 2012. Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (Oil Palm) seedlings. Molecules 17, 5195-5211.
- Ikonen, E., 2008. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125-138.
- Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P., 2008. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534-2536.
- Kopriva, S., Mugford, S.G., Baraniecka, P., Lee, B.R., Matthewman, C.A., Koprivova, A., 2012. Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Front. Plant Sci. 3, 163. https://doi.org/10.3389/fpls.2012.00163.
- Lavinsky, A.O., Magalhaes, P.C., Avila, R.G., Diniz, M.M., de Souza, T.C., 2015. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity. Crop J 3, 379-386.
- Le Roy, J., Huss, B., Creach, A., Hawkins, S., Neutelings, G., 2016. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front. Plant Sci. 7, 735. https://doi.org/10.3389/fpls.2016.00735.
- Liu, C.J., Miao, Y.C., Zhang, K.W., 2011. Sequestration and transport of lignin monomeric precursors. Molecules 16, 710-727.
- Lorence, A., Chevone, B.I., Mendes, P., Nessler, C.L., 2004. Myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134, 1200-1205.
- Ludewig, F., Flugge, U.I., 2013. Role of metabolite transporters in source-sink carbon allocation. Front. Plant Sci. 4, 231. https://doi.org/10.3389/fpls.2013.00231.
- Lunn, J.E., 2007. Compartmentation in plant metabolism. J. Exp. Bot. 58, 35-47.
- Mandoulakani, B.A., Eyvazpour, E., Ghadimzadeh, M., 2017. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry (Oxf.) 139, 1-7.
- Nagegowda, D.A., 2010. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 584, 2965-2973.
- Osorio, S., Ruan, Y.L., Fernie, A.R., 2014. An update on source-to-sink carbon partitioning in tomato. Front. Plant Sci. 5, 516. https://doi.org/10.3389/fpls.2014.00516.
- Rastogi, S., Kumar, R., Chanotiya, C.S., Shanker, K., Gupta, M.M., Nagegowda, D.A., Shasany, A.K., 2013. 4-Coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant Cell Physiol. 54, 1238-1252.
- Rastogi, S., Meena, S., Bhattacharya, A., Ghosh, S., Shukla, R.K., Singh Sangwan, N., Lal, R.K., Gupta, M.M., Lavania, U.C., Gupta, V., Nagegowda, D.A., Shasany, A.K., 2014. D e novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genom. 15, 588. https://doi.org/10.1186/1471-2164-15-588.
- Sarker, L.S., Galata, M., Demissie, Z.A., Mahmoud, S.S., 2012. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia. Arch. Biochem. Biophys. 528, 163-170.
- Schwachtje, J., Minchin, P.E.H., Jahnke, S., Van Dongen, J.T., Schittko, U., Baldwin, I., 2006. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. U.S.A. 103, 12935-12940.
- Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.
- Shoji, T., Yamada, Y., Hashimoto, T., 2000. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol. 41, 831-839.
- Singh, P., Jayaramaiah, R.H., Sarate, P., Thulasiram, H.V., Kulkarni, M.J., Giri, A.P., 2014. Insecticidal potential of defense metabolites from Ocimum kilimandscharicum against Helicoverpa armigera. PloS One 9 (8), e104377. https://doi.org/10.1371/ journal.pone.0104377.
- Singh, P., Kalunke, R.M., Giri, A.P., 2015. Towards comprehension of complex chemical evolution and diversification of terpene and phenylpropanoid pathways in Ocimum species. RSC Adv. 5, 106886-106904.
- Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R., Siuzdak, G., 2006. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779-787.
- Tiessen, A., Padilla Chacon, D., 2013. Subcellular compartmentation of sugar signaling: links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning. Front. Plant Sci. 3, 306. https://doi.org/10.3389/fpls.2012. 00306.
- Tzfadia, O., Diels, T., De Meyer, S., Vandepoele, K., Aharoni, A., Van de Peer, Y., 2016. CoExpNetViz: comparative co-expression networks construction and visualization tool. Front. Plant Sci. 6, 1194. https://doi.org/10.3389/fpls.2015.01194.
- Upadhyay, A.K., Chacko, A.R., Gandhimathi, A., et al., 2015. Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol. 15, 212. https://doi.org/10.1186/s12870-015-0562-x.
- Vogt, T., 2010. Phenylpropanoid biosynthesis. Mol. Plant 3, 2-20.
- Xiang, L., Zeng, L., Yuan, Y., Chen, M., Wang, F., Liu, X., Zeng, L., Lan, X., Liao, Z., 2012. Enhancement of artemisinin biosynthesis by overexpressing dxr, cyp71av1 and cpr in the plants of Artemisia annua L. Plant Omics 5, 503-507.
- Yazaki, K., 2006. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 580, 1183-1191.