Published January 31, 2022
| Version v1
Journal article
Restricted
Polyketide-derived macrobrevins from marine macroalga-associated Bacillus amyloliquefaciens as promising antibacterial agents against pathogens causing nosocomial infections
- 1. * & Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala State, India
Description
Chakraborty, Kajal, Kizhakkekalam, Vinaya Kizhakkepatt, Joy, Minju (2022): Polyketide-derived macrobrevins from marine macroalga-associated Bacillus amyloliquefaciens as promising antibacterial agents against pathogens causing nosocomial infections. Phytochemistry (112983) 193: 1-13, DOI: 10.1016/j.phytochem.2021.112983, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112983
Files
Linked records
Additional details
Identifiers
- URL
- https://www.checklistbank.org/dataset/264095
- LSID
- urn:lsid:plazi.org:pub:BC1AE57D6F779B42FFC5185A884ECE60
- URL
- http://publication.plazi.org/id/BC1AE57D6F779B42FFC5185A884ECE60
References
- Anjum, K., Abbas, S.Q., Shah, S.A., Akhter, N., Batool, S., Hassan, S.S., 2016. Marine sponges as a drug treasure. Biomol. Ther. (Seoul). 24 (4), 347-362. https://doi.org/ 10.4062/biomolther.2016.067.
- Armstrong, E., Rogerson, A., Leftley, J.W., 2000. The abundance of heterotrophic protists associated with intertidal seaweeds. Estuar. Coast Shelf Sci. 50 (3), 415-424. https://doi.org/10.1006/ecss.1999.0577.
- Balouiri, M., Sadiki, M., Ibnsouda, S.K., 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6 (2), 71-79. https://doi.org/ 10.1016/j.jpha.2015.11.005.
- Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45 (4), 493-496. PMID: 5325707.
- Bengtsson, M.M., Sjotun, K., Ovreas, L., 2010. Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea. Aquat. Microb. Ecol. 60 (1), 71-83. https://doi.org/ 10.3354/ame01409.
- Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., Weber, T., 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47 (W1), W81-W87. https://doi.org/10.1093/ nar/gkz310.
- Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H., Prinsep, M.R., 2016. Marine natural products. Nat. Prod. Rep. 33 (3), 382-431. https://doi.org/10.1039/c5np00156k.
- Brakhage, A.A., 2013. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11 (1), 21-32. https://doi.org/10.1038/nrmicro2916.
- Chakraborty, K., Kizhakkekalam, V.K., Joy, M., Chakraborty, R.D., 2020. Moving away from traditional antibiotic treatment: can macrocyclic lactones from marine macroalga-associated heterotroph be the alternatives? Appl. Microbiol. Biotechnol. 104 (16), 7117-7130. https://doi.org/10.1007/s00253-020-10658-0.
- Chakraborty, K., Thilakan, B., Kizhakkekalam, V.K., 2018. Antibacterial aryl-crowned polyketide from Bacillus subtilis associated with seaweed Anthophycus longifolius. J. Appl. Microbiol. 124 (1), 108-125. https://doi.org/10.1111/jam.13627.
- Chakraborty, K., Thilakan, B., Raola, V.K., 2014. Polyketide family of novel antibacterial 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin from seaweed-associated Bacillus subtilis MTCC 10403. J. Agric. Food Chem. 62 (50), 12194-12208. https://doi.org/ 10.1021/jf504845m.
- Chen, D., Yuan, Z., 2005. Therapeutic potential of peptide deformylase inhibitors. Expet Opin. Invest. Drugs 14 (9), 1107-1116. https://doi.org/10.1517/ 13543784.14.9.1107.
- Chen, X.H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., et al., 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25 (9), 1007-1014. https://doi.org/10.1038/nbt1325.
- Chen, X.H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Sussmuth, R., Piel, J., Borriss, R., 2009. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 140 (1-2), 27-37. https:// doi.org/10.1016/j.jbiotec.2008.10.011.
- DeLeo, F.R., Otto, M., Kreiswirth, B.N., Chambers, H.F., 2010. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375 (9725), 1557-1568. https:// doi.org/10.1016/S0140-6736(09)61999-1.
- Fukumoto, J., 1943. Studies on the production of bacterial amylase. I. Isolation of bacteria secreting potent amylases and their distribution. J. Agric. Chem. Soc. Jpn. 19 (7), 487-503. https://doi.org/10.1271/nogeikagaku1924.19.7_487.
- Gao, C.H., Tian, X.P., Qi, S.H., Luo, X.M., Wang, P., Zhang, S., 2010. Antibacterial and antilarval compounds from marine gorgonian-associated bacterium Bacillus amyloliquefaciens SCSIO 00856. J. Antibiot. (Tokyo) 63 (4), 191-193. https://doi. org/10.1038/ja.2010.7.
- Giglione, C., Pierre, M., Meinnel, T., 2000. Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol. Microbiol. 36 (6), 1197-1205. https://doi.org/10.1046/j.1365-2958.2000.01908.x.
- Guay, D.R., 2007. Drug forecast - the peptide deformylase inhibitors as antibacterial agents. Therapeut. Clin. Risk Manag. 3 (4), 513-525. PMID: 18472972.
- Harwood, C.R., Mouillon, J.M., Pohl, S., Arnau, J., 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 42 (6), 721-738. https://doi.org/10.1093/femsre/ fuy028.
- Helfrich, E.J.N., Vogel, C.M., Ueoka, R., Sch¨afer, M., Ryffel, F., Muller, D.B., Probst, S., Kreuzer, M., Piel, J., Vorholt, J.A., 2018. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 3 (8), 909-919. https://doi.org/10.1038/s41564-018-0200-0.
- Kijjoa, A., Sawangwong, P., 2004. Drugs and cosmetics from the sea. Mar. Drugs 2 (2), 73-82. https://doi.org/10.3390/md202073.
- Kizhakkekalam, V.K., Chakraborty, K., 2019. Pharmacological properties of marine macroalgae-associated heterotrophic bacteria. Arch. Microbiol. 201 (4), 505-518. https://doi.org/10.1007/s00203-018-1592-1.
- Kizhakkekalam, V.K., Chakraborty, K., 2020. Marine macroalgae-associated heterotrophic Firmicutes and Gamma-proteobacteria: prospective anti-infective agents against multidrug resistant pathogens. Arch. Microbiol. 202 (4), 905-920. https://doi.org/10.1007/s00203-019-01800-2.
- Ko, W.C., Paterson, D.L., Sagnimeni, A.J., Hansen, D.S., Von Gottberg, A., Mohapatra, S., Casellas, J.M., et al., 2002. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg. Infect. Dis. 8 (2), 160-166. https://doi. org/10.3201/eid0802.010025.
- Krieg, N.R., Holt, J.G., 1984. Bergey' s Manual of Systematic Bacteriology, vol. 1. The Williams and Wilkins Co, Baltimore, pp. 161-172.
- Lachnit, T., Meske, D., Wahl, M., Harder, T., Schmitz, R., 2011. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ. Microbiol. 13 (3), 655-665. https://doi.org/10.1111/j.1462-2920.2010.02371.x.
- Li, J.W., Vederas, J.C., 2009. Drug discovery and natural products: end of an era or an endless frontier? Science 325 (5937), 161-165. https://doi.org/10.1126/ science.1168243.
- Liao, L.M., 1996. Validation of names transferred to Kappaphycus Doty from Eucheuma J. Agardh (Rhodophyta: Solieriaceae). Philipp. J. Sci. 125 (2), 158-160.
- Mondol, M.A., Kim, J.H., Lee, H.S., Lee, Y.J., Shin, H.J., 2011. Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp. Bioorg. Med. Chem. Lett 21 (12), 3832-3835. https://doi.org/10.1016/j.bmcl.2010.12.050.
- Mondol, M.A., Shahidullah Tareq, F., Kim, J.H., Lee, M.A., Lee, H.S., Lee, J.S., Lee, Y.J., Shin, H.J., 2013. New antimicrobial compounds from a marine-derived Bacillus sp. J. Antibiot. (Tokyo) 66 (2), 89-95. https://doi.org/10.1038/ja.2012.102.
- Murray, B.E., 2000. Vancomycin-resistant enterococcal infections. N. Engl. J. Med. 342 (10), 710-721. https://doi.org/10.1056/NEJM200003093421007.
- Nagao, T., Adachi, K., Sakai, M., Nishijima, M., Sano, H., 2001. Novel macrolactins as antibiotic lactones from a marine bacterium. J. Antibiot. (Tokyo) 54 (4), 333-339. https://doi.org/10.7164/antibiotics.54.333.
- Newman, D.J., Cragg, G.M., 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83 (3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285.
- Ngalimat, M.S., Yahaya, R.S.R., Baharudin, M.M.A., Yaminudin, S.M., Karim, M., Ahmad, S.A., Sabri, S., 2021. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 9 (3), 614. https://doi. org/10.3390/microorganisms9030614.
- Pedersen, P.B., Bjornvad, M.E., Rasmussen, M.D., Petersen, J.N., 2002. Cytotoxic potential of industrial strains of Bacillus sp. Regul. Toxicol. Pharmacol. 36 (2), 155-161. https://doi.org/10.1006/rtph.2002.1574.
- Piel, J., 2010. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 27 (7), 996-1047. https://doi.org/10.1039/b816430b.
- Priest, F.G., Goodfellow, M., Shute, L.A., Berkeley, R.C.W., 1987. Bacillus amyloliquefaciens sp. nov., nom. rev. Int. J. Syst. Bacteriol. 37 (1), 69-71. https://doi. org/10.1099/00207713-37-1-69.
- Robertsen, H.L., Musiol-Kroll, E.M., 2019. Actinomycete-derived polyketides as a source of antibiotics and lead structures for the development of new antimicrobial drugs. Antibiotics (Basel) 8 (4), 157. https://doi.org/10.3390/antibiotics8040157.
- Sekurova, O.N., Schneider, O., Zotchev, S.B., 2019. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb. Biotechnol. 12 (5), 828-844. https://doi.org/10.1111/1751-7915.13398.
- Soldatou, S., Eldjarn, G.H., Huerta-Uribe, A., Rogers, S., Duncan, K.R., 2019. Linking biosynthetic and chemical space to accelerate microbial secondary metabolite discovery. FEMS Microbiol. Lett. 366 (13), fnz142. https://doi.org/10.1093/femsle/ fnz142.
- Strachan, C.R., Davies, J., 2016. Antibiotics and evolution: food for thought. J. Ind. Microbiol. Biotechnol. 43 (2-3), 149-153. https://doi.org/10.1007/s10295-015- 1702-x.
- Thilakan, B., Chakraborty, K., Chakraborty, R.D., 2016. Antimicrobial properties of cultivable bacteria associated with seaweeds in the Gulf of Mannar on the southeast coast of India. Can. J. Microbiol. 62 (8), 668-681. https://doi.org/10.1139/cjm- 2015-0769.
- van der Meij, A., Worsley, S.F., Hutchings, M.I., van Wezel, G.P., 2017. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41 (3), 392-416. https://doi.org/10.1093/femsre/fux005.
- van Wezel, G.P., McDowall, K.J., 2011. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep. 28 (7), 1311-1333. https://doi.org/10.1039/c1np00003a.
- Wang, L.T., Lee, F.L., Tai, C.J., Kuo, H.P., 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58 (Pt 3), 671-675. https://doi.org/10.1099/ijs.0.65191-0.
- Xiong, Z.Q., Wang, J.F., Hao, Y.Y., Wang, Y., 2013. Recent advances in the discovery and development of marine microbial natural products. Mar. Drugs 11 (3), 700-717. https://doi.org/10.3390/md11030700.
- Yoon, H.J., Kim, H.L., Lee, S.K., Kim, H.W., Kim, H.W., Lee, J.Y., Mikami, B., Suh, S.W., 2004. Crystal structure of peptide deformylase from Staphylococcus aureus in complex with actinonin, a naturally occurring antibacterial agent. Proteins 57 (3), 639-642. https://doi.org/10.1002/prot.20231.