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ABSTRACT

The assessment of climate change impacts on frequency of floods is important for
management of flood disasters. It is recognized that methods for the assessment are
subject to various sources of uncertainty (choice of climate model and emission scenario,
course spatial and temporal scales, etc.). This study investigates the climate change
related uncertainty in the frequency of flood flows for the Upper Thames River basin
(Ontario, Canada) using a wide range of climate models. Climate model outputs are
downscaled using the change factor approach for 30-year time slices centered on years
2020, 2050 and 2080. To estimate natural variability, a stochastic weather generator is
used to produce synthetic time series for each horizon and for each climate scenario. A
number of realizations out of historical range are also produced for the 1979-2005
baselines using the weather generator. A continuous daily hydrologic model was then
used to generate daily flow series for the baseline and for the future time horizons. A
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peak-over-threshold (POT) with Generalized Pareto Distribution is used to produce flood
frequency curves for the four time horizons. The uncertainty involved with the POT
modelling is also considered. The results indicate that use of unbounded GPD model
should be employed for flood frequency analysis. A large uncertainty exists in all the
projected future design floods. Probabilistic assessment of the uncertainty is carried out
and it provides the estimation of flood magnitude-return period relationship with high level
of confidence.

Keywords: Flood frequency; climate change; uncertainty; peak-over-threshold; hydrology;
river flow.

1. INTRODUCTION

It is widely recognized that hydrologic cycle will be intensified by increasing global
temperatures, resulting from increased anthropogenic emissions of greenhouse gases 1.
This will produce an effect on climate variables and will result in changes in climate. One of
the expected consequences of climate change is the increase in terms of magnitude and
frequency of extreme hydrologic events 2. A number of studies in the Canadian context
conform to the findings of IPCC 2. Particularly, a study that was carried out by the
Environment Canada 4 on four selected river basins in Ontario using a modeling approach,
suggests that the impacts of future climate change on the frequency and magnitude of river
flow, precipitation, and associated flooding risks will increase in that part of Canada. It is also
noted that the monthly total number of rainfall related water damage insurance claims and
incurred loss could increase by about 20% to 30% in the 2nd half of the 21st century. Also, a
study that was carried out by the Public Infrastructure Engineering Vulnerability Committee
of Engineers Canada 5, concludes that the failures of water resource’s infrastructure due to
climate change will become increasingly common across Canada.  It is thus suggested 6
that water resource’s infrastructure design criteria should be revised to adapt to the expected
changes in magnitude and frequency of extreme flood events 6.

The traditional approach to quantifying the expected changes in frequency of extreme flood
events under climate change is to develop climatic variables time series from GCMs and link
the scenarios to a hydrological model from which peak flows are analysed through a flood
frequency approach 78.  It is recognized that the above approach is subject to various
sources of uncertainty. Climate data (GCM structure, future emission scenarios, climate
variability, course spatial and temporal scales) and simulated hydrologic regimes (future land
use scenarios, hydrological model structure, model parameters) are the main sources of
uncertainty 910,11. Considering most of the uncertainty sources in the study by Jung et al.
11 it is found that changes in flood frequency are more sensitive to climate change and the
uncertainty caused by climate models is higher than due to other sources. The similar
findings were also obtained in 12.
.
Quantifying uncertainty linked with climate data has been a research topic over the last
decade and has been assessed generally by generating a large ensemble of climate
scenarios using Monte Carlo simulation 9 or using climate projections obtained from the
combinations of several GCMs and emission scenarios 13,14,12. It is understood from the
above studies that to better encompass the uncertainty linked with climate data, the
incorporation of many GCMs and carefully chosen emission scenarios is necessary. Also,
there has been less attention focused on the flood frequency approach in terms of modeling
in changing climate conditions. However it can be noted that the spread of a multiple model
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ensemble is rarely a direct measure of uncertainty, particularly given that models are unlikely
to be independent, but the spread can help to characterize uncertainty 15.

The main objective of this study is to investigate the climate change related uncertainty in
the estimation of extreme flood flows for the Upper Thames River basin (Ontario, Canada)
using climate models and emission scenarios. A previous climate change study performed in
the Upper Thames Basin 16 indicates that the basin will experience more frequent and
severe flooding. Another recent study Das et al. 17 indicates a similar hydrological behavior
in terms of extreme rainfall intensity when they select a distribution for future datasets
obtained from a wide range of climate scenarios derived from Atmosphere-Ocean Global
Climate Models (AOGCM). In this study peak over threshold (POT) approach of flood
frequency is used to estimate flood magnitude - return period (Q-T) relationship. The
suitability of the distributions associated with the POT model, and the uncertainty involved
with the POT modeling under climate change is also considered. This paper can contribute
to a better understanding of climate change impacts on flood frequency, and is expected to
help water practitioners to assess flood risk in a changing climate. The outline of the paper is
organized as follows. Section 2 describes the methodology applied in this study for
assessing climate change impacts on flood frequency. Section 3 describes the study area of
the Upper Thames River Basin (UTRB), along with the production of peak over threshold
(POT) series for the Byron gauging station located in the UTRB. Section 4 presents and
discusses the results. Finally the paper is concluded in Section 5.

2. METHODOLOGY

The methodologies applied in this study for the assessment of climate change impacts on
flood frequency differ from other similar studies 9,13,1412 in one or many of the following
key points.

1. Climate data was obtained from fifteen different climate projections from a
combination of six Atmosphere-Ocean Global Climate Models (AOGCMs) and three
emission scenarios “A1B”, “B1” and “A2” out of the family of emission scenarios.

2. A KNN-based stochastic weather generator was used to downscale climate data
from AOGCMs.

3. The hydrological simulations were performed in a continuous mode using the HEC-
HMS model and

4. The peak flows extracted from the simulated flow series were assessed through the
peak over threshold (POT) flood frequency approach.

2.1 Climate Models

Coupled Atmosphere-Ocean Global Climate Models (AOGCMs) are current state of the art
in climate impact research. AOGCMs are the most viable tools for simulating physical
processes in the atmosphere, ocean, cryosphere and land surface that determine global
climate 2. They are based on various assumptions about the effects of the concentration of
greenhouse gases in the atmosphere coupled with projections of CO2 emission rates 18.
AOGCMs are associated with model structure developed by various countries, and the
emission scenarios. Three emission scenarios “A1B”, “B1” and “A2” out of the family of
emission scenarios 19 are most commonly used in climate impact studies. These represent
respectively medium, low and high emission scenarios for the 21st century 20. In this study,
a total of 15 climate projections from 6 AOGCMs, each with two to three emission scenarios
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are selected for investigation. A list of these models including their origin and associated
scenarios is provided in Table 1.

Table 1. List of AOGCM models and emission scenarios used

GCM models Sponsors, Country Emission
Scenarios

Atmospheric
Resolution
Lat Long

CGCM3T47, 2005 Canadian Centre for
Climate Modelling and
Analysis, Canada

A1B, B1, A2 3.75º 3.75º
CGCM3T63, 2005 A1B, B1, A2 2.81º 2.81º

CSIROMK3.5, 2001 CISRO, Australia B1, A2 1.875º 1.875º
GISSAOM, 2004 NASA/ GISS, USA A1B, B1 3º 4º
MIROC3.2HIRES, 2004 JAMSTEC, Japan A1B, B1 1.125º 1.125°
MIROC3.2MEDRES, 2004 A1B, B1, A2 2.8º 2.8º

2.2 Downscaling Technique: Weather Generator

Downscaling is employed to address the deficiencies (i.e. coarse spatial and temporal
resolution) of global climate models for use at local scales. Downscaling based on weather
generator is widely used in climate impact studies 21,22,1623. Weather generator
stochastically simulates climate information for an area by combining both, local and global
weather data.  The KnnCAD weather generator, developed at the University of Western
Ontario was used in this study to produce synthetic data sets 24.  The model is based on K-
Nearest Neighbour (K-NN) algorithm of 25, modified in 26 and completed in 24. The K-NN
algorithm of 25 is an improvement of the model introduced in 22. The K-NN algorithm of 22
is not able to generate values outside the observed data. An improved K-NN technique is
presented in Sharif and Burn 25 by introducing a perturbation process to generate new data
outside of the observed data range. Modifications Eum and Simonovic 2726 have been
made to a K-NN algorithm by incorporating the principal component analysis to reduce high
computational requirements. The first principal component is used in 26 to modify the K-NN
algorithm of 25. The model operates by generating weather for a new day for a station of
interest. This has been done by extracting all days with similar characteristics, known as
nearest neighbours, from the historic record from which a single value is selected according
to a defined set of rules. The detailed presentation of the KnnCAD weather generator is
described in 24. The addition of principal component analysis provides reduction in
computational requirements and allows more variables to be included for an improved
selection of nearest neighbours. The inclusion of a perturbation mechanism allows newly
generated values to be outside of the observed range.  The data sets produced in this way
are believed to allow researcher to take into account natural variability when predicting the
future effects of climate change 24.

2.3 Hydrological Model

This study uses HEC-HMS model developed by the US Army Corps of Engineers (USACE)
to carry out hydrological simulations in a continuous mode. The model has been widely
applied in many geographical locations for solving a variety of hydrological problems
28293031 and used by the local water authority (the Upper Thames River Conservation
Authority-UTRCA), in everyday practice. Precipitation, air temperature, and estimated
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potential evapotranspiration are used as input data for HEC-HMS model. Additionally, soil
information and land use data are required for estimating initial parameter sets for the model.

The overall structure of the continuous simulation version of the HEC-HMS model used in
this study is presented in Fig. 1. The model includes four components. Each component
represents a module that mathematically represents a physical processes functioning in the
river basin. Snow module takes precipitation and air temperature (maximum and minimum)
data obtained from the weather generator as inputs to separate solid and liquid form of
precipitation. The algorithm of the snow module is based on a degree-day method30. The
output of the snow module is adjusted precipitation, used for computation of losses.

Fig. 1. Continuous HEC-HMS hydrologic model structure

The losses module integrated with HMS is soil-moisture accounting (SMA). The module is
used to estimate and subtract the losses (interception, infiltration and evapotranspiration)
from adjusted precipitation. The 5-layer SMA module is based on Precipitation-Runoff
modeling System, PRMS 32 designed to compute runoff discharge on a continuous time
basis. The SMA uses four types of conceptual storage: canopy- interception, surface -
interception, soil profile, and a number of ground water storage. The inflow and outflow rates
(i.e. evapotranspiration, infiltration, percolation, surface runoff and ground water flow)
between the reservoirs regulate the amount of water stored in each conceptual reservoir.
Surface excess, groundwater flow and ground water recharge are outputs from the losses
module. The Clark unit hydrograph 33 is used to convert surface excess to direct runoff. The
groundwater flow is transformed into baseflow by a series of linear reservoir model. Both
direct runoff and baseflow enter the river. The translation and attenuation of flow in river



British Journal of Environment & Climate Change, 2(4): 318-338, 2012

323

reach is simulated by the modified puls method 33. The ground water recharge enters deep
aquifers and does not return to the stream.

2.4 Flood Frequency Approach: POT Model

In this study the peaks-over-threshold (POT) approach is chosen for flood frequency
analysis. POT model has been widely used in climate change impact studies 891312,34. In
a POT model, a series of well-defined flood peaks above a specified threshold ( 0q ) is fitted
with a continuous probability distribution. The flood events are modelled by a discrete
probability distribution, such as Poisson distribution, and the model is of the form:

 
T

qQQF

1/1 0  (1)

where  F is the cumulative frequency distribution of flood magnitude, 0qQ  .  is the
number of peaks per year included in the POT series. According to Cunnane 35, the POT
model is statistically more efficient than the Annual Maximum (AM) model when  > 1.65.

The  generalized pareto distribution (GPD), of which the exponential  distribution 3637 is a
special case, with Poisson arrival rate has  been  the  most  popular  model  for  POT series
analysis 3839. This follows from the result shown in 40 that the GPD arises as a limiting
form for the distribution of independent exceedances over a high threshold. The cumulative
distribution function of GPD is given by
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where 0q is the threshold  is a scale parameter and k is a shape parameter.

When k =0, this is reduced to exponential distribution of the form
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The inverse form of the GPD is

     0,110  kF
k

qFq k
(4)

    0,1ln0  kFqFq  (5)

In this study the GPD with Poisson arrival rate is used to model POT series. Flood peaks
were extracted at an average rate of three per year (i.e. threshold is implicit) by applying the
independence criteria outlined in 4142 using the WETSPRO software developed by the
Hydraulics Laboratory of K.U. Leuven in Belgium 4142. The fitting of a GPD to a POT series
is carried out using the method of L-moments 4344.

2.5 POT Modelling under Climate Change: Test of GPD and Poisson Process

The suitability of Generalized Pareto Distribution (GPD) can be assessed with the help of L-
moment ratio diagrams. The L-moment ratio diagrams are considered as a reliable
diagnostic tool for identifying a probability distribution 43. The L-moment ratio diagram is a
plot between L-kurtosis and L-skewness. A two-parameter distribution with a location and a



British Journal of Environment & Climate Change, 2(4): 318-338, 2012

324

scale parameter plots as a single point while a three parameter distribution with location,
scale and shape plots as a line or curve on the diagram.  Generally the distribution selection
process involves plotting the sample L-moment ratios as a scatter plot and comparing them
with theoretical L-moment ratio points or curves of candidate distributions 43. The GPD is
plotted as a line that corresponds to the varying shape parameters. The Exponential
distribution (a 2-parameter distribution) which is a special case of the GPD plots as a single
point. The L-moment ratio diagram has been successfully used in regional/pooling flood
frequency analysis45 to select a distribution for a region46. In this context, a good number of
POT series obtained from different AOGCMs allow the L-moment ratio diagram to be used.

A test of the Poisson process can be conducted on a flow series of peaks exceeding 0q . The
simplest Poisson model states that such a series conforms to a Poisson process, the
number occurring in any year being a Poisson variate with parameter ,

!/)( 0 mePyearainqpeaksmp m
m  and that the flood peaks are identically,

independently distributed (i.i.d) with distribution function  0/ qQQF  37. The Poisson
dispersion test 37 provides a powerful method for testing the adequacy of the fitted Poisson
distribution. The test is based on the fact that the Poisson distribution, the mean and
variance are equal.

The test statistic (D ) is as follows:
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xx
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n
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2

(6)

However it is shown in 37 in the context of POT analysis that while the Poisson assumption
is a sufficient condition for flood magnitude-return period relationship, it is not a necessary
one.

3. CASE STUDY

The methodology described in the previous section is applied to the Upper Thames River
Basin (UTRB) in Canada.

3.1 Description of the Watershed

The Upper Thames River basin has an area of 3,842 km2 located between Lake Huron and
Lake Erie in Southwestern Ontario, Canada. Majority of the river basin is covered with
agricultural land (80%), with forest cover and urban uses taking about 10% each. London is
the major urban centre with a population of around 366,200 inhabitants, many of whom
experience the effects of flooding as the Thames River runs directly through the City. The
length of the Thames River is 273 km with an average annual discharge of 35.9 m3/s. The
UTRB receives approximately 1,000 mm of annual precipitation; however 60% of this is lost
due to evapotranspiration 47. Fig. 2 shows a schematic map of the Upper Thames River
basin. Flooding represents one of the major hydrologic hazards in the Upper Thames River
basin. Flooding most frequently occurs after snowmelt, typically in early March; it also occurs
as a result of summer storms usually taking place in July and August. In 1937, the City of
London experienced a massive flooding event which eventually sparked the creation of the
Upper Thames River Conservation Authority. Since then, three major water management
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reservoirs were created, namely Pittock, Wildwood, and Fanshawe 48. Most recently the
Thames River has experienced several extreme flood events such as in July 2000, April
2008 and December 2008. Several weather stations are located throughout the basin to
provide point measurements of climatic variables. Stations chosen for this study are
indicated in Fig. 2.

Fig. 2. Map of the upper Thames river basin after census of Canada 49

3.2 Hydrological Model Setup, Calibration and Validation

The hydrologic model used in this study was originally developed and applied to the Upper
Thames River in the work by Cunderlik and Simonovic 30,16. The model consists of thirty
three sub-basins, twenty one river reaches, and three reservoirs namely Wildwood,
Fanshawe and Pittock 47. Each sub-basin is provided with interpolated precipitation and
maximum and minimum temperature data. The outputs of each sub basin are flow
hydrographs joined by junctions where the flows are added together. River reaches
represent the major rivers in the basin connected between two junctions. The routing module
(i.e. modified puls) is applied to each river reach, and thus acts as a passage of a flood wave
as it moves through the river system. The same routing rules are also applied to the
reservoirs. The model was calibrated and verified with extensive sensitivity analyses in the
work by Cunderlik and Simonovic 30,16. The model is seasonal in nature with different
parameters referring to the summer and winter seasons. The parameter sets for the summer
and winter seasons are presented in 30 and 48. In this paper no attempt has been made to
recalibrate the model.
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3.3 Data Source and Production of POT Series

The following steps are implemented to produce POT series for a stream gauge under
climate change. The Byron stream gauge, located in South-East of the Upper Thames River
basin, is selected for this study.

1. Daily weather data (precipitation, maximum temperature and minimum temperature)
for the period of 1979-2005 was obtained from Environment Canada
(http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html) for each of the
stations used in this study. Stations were chosen based on the completeness and
length of the observed data. The historic daily flow data for the Byron gauging
station was obtained from Environment Canada (http://www.wateroffice.ec.gc.ca).

2. Climate data for each of the fifteen AOGCM’s scenarios have been collected from
the nearest grid points surrounding the Upper Thames River Basin. The Canadian
Climate Change Scenarios Network (CCCSN) provides access to those AOGCM
models and emissions scenarios. Data have been obtained for four time slices:
1961-1990, 2011-2040, 2041-2050 and 2071-2100. Seven variables were chosen:
minimum temperature, maximum temperature, precipitation, specific humidity,
northward wind component, southward wind component and mean sea level
pressure.

3. Climate variables from the nearest grid points have been interpolated to provide a
data set for each of the stations of interest. For the purpose of interpolation the
inverse distance weighting method 50 is used.

4. Calculation of change factors for future climate is performed. Using the AOGCM
datasets for each station, monthly averages are computed for each variable for both
the baseline (1960-1990) and the future time slices (2011-2040, 2041-2070 or 2071-
2100). For maximum temperature, minimum temperature, northward wind speed,
eastward wind speed and mean sea level pressure, the monthly change factors are
computed as the difference between the baseline and the future averages. For
precipitation and humidity, the change factors are taken as the percent change
between the baseline and the future averages.  The change factors have then been
used to modify the historic datasets for each station. The historical daily data for
humidity and precipitation are multiplied by the monthly change factors. For the rest
of the variables, the change factors are added to modify the historical data. This has
been done because daily modeled climate data was not available. It is understood
that the way historic data was modified, it does not allow for more complex changes
in daily extreme climate data.

5. Modified historic data sets, are used as input into the weather generator model
(knnCADV3) to produce synthetic data series of precipitation, maximum and
minimum temperature for future climate. This study uses data from 22 stations for
the period of 1979-2005 (N=27) to simulate data series.  Another scenario “baseline”
is developed by perturbing historical data. Each case is simulated 25 times to
account for inter climate variability.

6. The locations of 22 stations for climate data do not correspond to the locations of the
sub-basins. The synthetic data series derived from the weather generator is
therefore spatially interpolated in order to be used by the HEC-HMS hydrologic
model. The inverse distance weighting method 50 is used for interpolation. The
interpolated synthetic data series of precipitation, maximum and minimum air
temperature are fed into the calibrated hydrological model to get the simulated flow
series.
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7. Peaks are extracted from the flow series for the Byron station at an average rate of
three per year (i.e. the peak threshold is implicit), using the set of rules outlined in
42. Thus 81 most extreme floods are selected for each of the flow series.

4. RESULTS AND DISCUSSION

This section presents the results of the statistical procedures applied to the POT data series
produced for the Byron stream gauging station located in the Upper Thames River basin
under changing climate conditions.

4.1 Peak Flows

POT series are obtained for each future time horizon (2020, 2050 and 2080) and for the
baseline (1979-2005). A total of 375 POT series (15 AOGCMs x 25 model runs each) are
derived for each future climate projection (i.e. 2020, 2050 and 2080). For baseline, 25 POT
series are obtained by perturbing historical data 25 times using the weather generator. Fig.
3 shows the Box-plots of peak discharges for each AOGCM for all the time horizons.
Baseline is included in each future time horizon for the comparison.

Fig. 3. Box-plots of peak discharges for all AOGCMs considered in this study. Results
are for the Byron gauging station in the Upper Thames River basin at the 2020, 2050
and 2080 time horizons. The baseline period (BL) is also included with each future

time horizon

By 2020, Canadian climate models (CGCM3T47 and 63) under scenarios A1B, A2, B1,
suggest a 7-16% (median) increase in peak discharge, whereas rest of the models propose
a 4-16% (median) decrease compared to the baseline period. By 2050, climate models
MICROC3HIRES and GISSAOM under scenarios A1B and B1, suggest a 1-8% (median)
decrease in peak discharge, whereas rest of the AOGCMs propose an 8-28% (median)
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increase in peak discharge compared to the baseline period. The largest increase is
projected by CSIROMK3.5-A2. By 2080, climate models, MICROC3HIRES under scenarios
A1B and B1 and CSIROMK3.5 under scenario B1 propose a 2-11% median decrease,
whereas rest of the AOGCMs suggest a 2-44% (median) increase in peak discharge
compared to the baseline period. The largest increase at 44% is projected by CGCM3T63-
A1B. The maximum discharge is projected by CGCM3T63-A2, MICROC3MEDRES-B1 and
CGCM3T47-A2, respectively for the 2020, 2050 and 2080 time horizon. This shows the
variability of peaks projected by different climate models under different emission scenarios
at different time horizons.

4.2 Evaluation of POT Modelling

The L-moment ratio diagrams (LMR) were constructed for all four time horizons and they are
displayed in Fig. 4. The LMR for baseline is constructed with 25 data points, one for each
model run. The LMRs for future time horizons are constructed with 375 data points (15
AOGCMs x 25 model runs each). The average of the data points is shown as square. The
GPD is shown as a curve whereas the Exponential distribution which is a special case of
GPD is shown as a single point (circle). Fig. 4 shows, except for baseline, the peaks follow
the GPD distribution very well. The average data point is also very close in those cases to
the population L-moments of an exponential distribution. This indicates that the two
parameter GPD distribution is also capable of describing the data very well. Therefore either
GPD or its special case Exponential distribution can be used to describe peak flow data
under climate change.

Fig. 4. L-moment ratio diagrams for POT series obtained for all future climate
projections, and for the baseline period (BL)

The value of the shape parameter and its precision is important in POT modelling using the
GPD. Estimated shape parameter from a data series has a significant amount of uncertainty.
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Therefore an evaluation of the parameter for all data sets is needed, and is performed in this
section. Fig. 5 displays the boxplots for the shape parameter for all time horizons. This
shows how the parameter values vary for each of the data sets in each time horizons. It is
suggested that the upper and lower values indicated by the box i.e. containing the middle
50% of values, ought to give a good indication of the range of true values. For baseline
period (BL), the range is between -0.09 and 0.1 (median value .05), which indicates most of
the cases the distribution is upper-bounded. For the future time horizons (no particular trend
was observed among the three horizons) the ranges are between -0.1 and 0.1 with median
value zero indicates a decreasing trend compared to BL. Thus overall results show that the
future data should be modelled with a non-upper bounded GPD with shape parameter, k = 0.

Dispersion test described in Section 2.5 is used to test the Poisson process. The dispersion
index, D, is calculated for POT series obtained for all the future time horizons. The test is
evaluated at the 0.05 significance level, which means that it is expected that if the Poisson
model is reasonable for the data, it is rejected in about 5% of cases. Table 2 summarizes the
% of times out of x datasets (for BL, x = 25; for future climate, x = 375) that Poisson is
rejected by the test. The D rejected Poisson about 50% of all cases suggesting that peaks
derived in this study follow Poisson distribution in about 50% cases. It can be mentioned
here that for obtaining a flood magnitude-return period relationship using a POT series, the
Poisson assumption is not a necessary one 37.

Fig. 5. Box plots of shape parameter of GPD distribution at the four time horizons

Table 2. Percentage of rejections at the 5% significance level for the dispersion test

Baseline 2020 2050 2080
Poisson 52% 42% 55% 47%

4.3 Flood Magnitude - Return Period Relationship and Uncertainties

POT series derived from different AOGCMs are used to estimate flood magnitude - return
period relationships (Q-T curves) for all time horizons. It is hoped that employing a good
number of different AOGCM models and scenarios the many variations of climate change
encompassing all uncertainties were taken into account, which give a wide variety of results
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to analyze. The flood frequency curves for all climate model scenarios are produced using
the GPD (Generalized Pareto Distribution) model.

Fig. 6 displays the flood frequency results (Q-T curve) for all the time horizons. The flood
frequency curve derived from historic data is also shown for information only. The AOGCMs
for the highest and the lowest frequency curves at T= 250 are highlighted in the figure. For
example, the highest and lowest frequency curves (i.e. upper and lower boundary) for 2020
are obtained from a model run derived from CGCM3T63-A2 and MICRO3MEDRES-A1B,
respectively. It is found that the corresponding magnitudes for 100 (250)-year floods are
respectively 1175(1626) and 391(478) m3/s. It is to be mentioned that the corresponding 100
and 250-year floods based on historic data are 955 and 1107 m3/s, respectively. These
indicate how the return values vary with the application of different AOGCMs, due to the
assumptions made in each model. It is to be noted that the upper and lower boundary for the
future time horizons are provided by different climate models. In terms of emission
scenarios, A2 accommodates the upper boundary most often, which is expected. A1B
provides the lower boundary in 2 out of 3 cases, while B1 provides the remaining one. That
suggests uncertainty linked with climate data should be better-quantified by incorporating
climate projections from available GCMs and carefully chosen emission scenarios.

Fig. 6 Simulated flood frequency results for climate data. Each plot relates to different
time horizons. Data from 375 scenarios (15 climate model scenarios x 25 model runs

each) are used for future climate. Each line with a specific color represents a different
AOGCM. The upper and lower bound frequency curves are indicated in the plots. The
flood frequency curve derived from historic data is also shown for information only.

Data from 25 runs are used to produce a range of results for baseline

The frequency curves for Canadian models (CGCM3T47 and 63) under emission scenarios
A1B, A2 and B1 are grouped together to show how Canadian models performed in terms of
Q-T relationship. They are displayed in Fig. 7 for the different time horizons. These climate
models are of particular interest because the study region is located in Canada. The upper
and lower bound frequency curves for the future time horizons are provided by different
combinations of Canadian climate models and emission scenarios, suggesting that both
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these models associated with the above scenarios should be used to better quantify an
uncertainty envelope.

Fig. 7. Simulated flood frequency results for climate data obtained from Canadian
climate models. Each plot relates to different time horizons. Data from 150 scenarios
(6 Canadian climate model scenarios x 25 model run each) are used for each plot for
the future climate. Simulated flood frequency results for climate data at baseline are

also shown

A large number of design flow values (15 AOGCMs X 25 model runs each = 375 data series)
obtained for different model scenarios for a particular return period can be assumed to be a
good representation of flow variability under climate change and these can be used to derive
an uncertainty measure. Other than simple normal assumption, non-parametric assumption
51,23 or Bayesian approach 52 can be employed to estimate an uncertainty bound. Non
parametric based approach, normal kernel function 53, is used in this study to construct
probability density functions (PDF). Fig. 8 shows, for example, the PDFs of 100-year return
period flood for each AOGCM at time horizon 2050. The PDFs are constructed for each
AOGCM using 25 model runs. The PDFs are different for different AOGCMs. A greater
variance is observed for the climate models, CGCM3T63-A2 and MICROC3MEDRES-B1.
Probability density plots are also constructed by incorporating data from all the 15 climate
projections. They are displayed in Fig. 9 for floods at return periods, T = 10, 100 and 250 at
the four time horizons for comparison. The plots show that variability increases with time, as
PDFs become wider. With wider PDFs, a greater variance of design floods is noticed. It is
found that the average percentage changes of the 100-year flood magnitude between the
future climate (2020, 2050 and 2080) and the baseline (1979-2005) are respectively 8, 12
and 12.3%. The corresponding percentage changes for the 250-year flood are respectively
19, 32 and 32.5%. In case of 10-year flood, very little changes have been observed between
future and baseline climate projections. The information from Fig. 9, are converted to
cumulative distribution functions (CDFs). They are displayed in Fig. 10. The CDFs allow the
uncertainty of design flood to be quantified with high level of confidence.
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Fig. 8 Probability density functions (PDFs) of 100-year return period flood for all
AOGCMs at the time horizon 2050. Each PDF is constructed using 25 model runs.

Fig. 9 Probability density plots for flood magnitudes at return period, T = 10, 100 and
250 at the four time horizons
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Fig. 10. Cumulative distribution functions for flood magnitudes at return period, T =
10, 100 at the four time horizons

From the results of flood magnitude – return period relationship (Q-T) it can be said that
there is significant variation between climate model scenarios and this variation contributes
more when an effort is carried out to predict floods for a far distant future. Hence, climate
change impact studies based on only one AOGCM and/or emission scenario should be
considered with a great care. The use of two carefully chosen climate projections (dry and
wet projections, for example) may be more appropriate than using single model and this has
been done in several recent climate change impact studies 47.

4.4 Limitations of the Assessment Procedure

One of the limitations to the approach presented in this paper is linked to hydrologic model
calibration. In this research no attempt has been made to recalibrate the model. The
approach implicitly assumes that the calibration is equally acceptable for the baseline and
the future conditions. Therefore the average % changes of return flood values between
future climate and baseline period indicated above should be used as a guideline for
engineering practice.

Another limitation is in the way weather generator generates the data series. The input
AOGCM data for the weather generator only varies from the historical dataset in terms of the
mean, maximum and minimum values; the variance remains the same. That does not allow
for more complex changes in daily extreme climate data for the future. The technique of
perturbation has been applied to overcome the limitations i.e. to enhance generation of
extreme precipitation values to some extent. However a methodology is needed for creating
AOGCM modified input datasets for KnnCAD weather generator from the daily AOGCM
outputs that takes into account changes in both, the mean and variance in the precipitation.
The Interpolation procedure (IDW, in this study) is also one more source of uncertainty.
These could affect the results and might lead to an underestimation of changes in future
flood frequency. For incorporating inter climate variability of a climate model, 25 model runs
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are performed in this study. A greater number of model runs should provide a better
variability incorporated by a climate model.

5. CONCLUSIONS

This study employs a multi-model, multi-scenario approach to produce flood magnitude -
return period relationships of future extreme flood flows. A use of wide range of climate
model scenarios allows investigating the climate change related uncertainty in the design
flood flows for the Upper Thames River basin (Ontario, Canada). Fifteen different climate
model scenarios from a combination of six Atmosphere-Ocean Global Climate Models
(AOGCMs) and three emission scenarios “A1B”, “B1” and “A2” are used to determine an
uncertainty envelope. To account for the natural variability of the hydro-climatic system, a
KNN based weather generator was employed to generate sequences of precipitation and air
temperatures (minimum and maximum) in daily basis. A total of 375 (15 AOGCMs X 25
model runs) climate scenarios were produced for the future time horizons centred on 2020,
2050 and 2080, and 25 for baseline period (1979-2005). A continuous daily hydrologic
model, calibrated for the basin, was then used to generate daily flow series for the baseline
period and for the future time horizons.  A peak-over-threshold (POT) modeling approach
with Generalized Pareto Distribution is used to produce flood frequency curves for the four
time horizons. The uncertainty involved with the POT modelling was also considered in this
study. Major findings of the study are summarized below:

1. Analyses of the GPD shape parameter for different datasets confirm that the POT
modelling with GPD using k = 0 (i.e. Exponential distribution) should be used for
flood frequency analysis at the Byron gauging station in the Upper Thames River
basin.

2. A large uncertainty exists in all the projected future design floods. The application of
a wide range of climate models and scenarios allows performing probabilistic
approach to better outline the uncertainty linked with climate data. The probabilistic
approach also provides estimate of flood frequency curve with high level of
confidence.

3. Based on the study results, it is rational to believe that the hydrologic behaviour of
the Upper Thames River basin would be changed over the next century. While it is
impossible to predict the future floods accurately, the recommendation of this study
is to include the uncertainty associated with future design floods into engineering
and management practices. Based on the comparison made with the baseline
period it is  recommended, for engineering practice that design extreme floods
established from observed data should be increased for at least 30% to account for
climate change.
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