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Project Specification 
CERN is establishing a large scale private cloud based on OpenStack as part of the 
expansion of the computing infrastructure for the Large Hardon Collider (LHC).  
 
Depending on the application running on the cloud, some virtual machines require large 
disk capacities or high reliability/performance volumes. This project involves the 
configuration, deployment and testing of OpenStack Cinder as well as the integration 
with other block storage alternatives such as NetApp and Ceph.  
 
A performance analysis and comparison between these storage mechanisms will be 
undertaken to determine the most suitable for use at CERN. Furthermore, modifications 
will also be made to OpenStack to allow user-specified Ceph data striping values to be 
set during volume creation as well as the Ceph/QEMU caching method upon volume 
attachment to an instance. 



 

Abstract 

With the ever increasing amount of data produced from Large Hadron Collider (LHC) 
experiments, new ways are sought to help analyze and store this data as well as help 
researchers perform their own experiments. To help offer solutions to such problems, 
CERN has employed the use of cloud computing and in particular OpenStack; an open 
source and scalable platform for building public and private clouds.  

The OpenStack project contains many components such as Cinder used to create block 
storage that can be attached to virtual machines and in turn help increase performance. 
However instead of creating volumes locally with OpenStack, others remote storage 
clusters exist offering block based storage with features not present in the current 
OpenStack implementation; two popular solutions are NetApp and Ceph.  

Two features Ceph offers is the ability to stripe data stored within volumes over the 
distributed cluster as well as locally cache this data, both with the aim of improving 
performance. When in use with OpenStack, Ceph performs default data striping where 
the number and size of stripes is fixed and cannot be changed dependent on the volume to 
be created. Similarly, Ceph does not perform data caching when integrated with 
OpenStack. 

In this project we outline and document the integration of NetApp and Ceph with 
OpenStack as well as benchmark the performance of the NetApp and Ceph clusters 
already present at CERN. To allow Ceph data striping, we modify OpenStack to take the 
number and size of stripes input via the user to create volumes whose data is then striped 
according to the values they specify. Similarly, we also modify OpenStack to enable 
Ceph caching and allow users to select the caching policy they require per-volume. In 
this report, we describe how these features are implemented.
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1 Introduction 
Since 2002, CERN has taken a globally leading role in developing continuously 
operational Grids such as the Worldwide LHC Computing Grid to handle the large 
volumes of data, simulation runs and data analyses required by researchers using the 
LHC. Nowadays with the ever increasing computational and data demands produced 
from the LHC experiments, CERN is looking at new ways to help store and analyze LHC 
data as well as find new ways to support their researchers and one such way is turning to 
the cloud; more specifically, using OpenStack (Andrade, et al. 2012).  

OpenStack is a open and scalable cloud platform for building public and private clouds 
(OpenStack 2013). Hence the use of OpenStack allows CERN to support the data and 
compute demands resulting from LHC experiments as well as optimize their current IT 
infrastructure. As part of the expansion of the computing infrastructure for the LHC 
experiements, CERN is establishing a large scale private cloud based on OpenStack. Due 
to the large amounts of data researchers need to work with and dependent on the 
application running on the cloud, some virtual machines may require large disk capacities 
or high reliability/performance volumes.  

The OpenStack Cinder project aims to provide such features by offering “block storage 
as a service” allowing storage volumes to be attached to virtual machine instances. 
Typically these volumes reside locally upon nodes within the OpenStack cloud however 
Cinder can leverage other block storage infrastructures served from remote clusters. 
These alternative block storage providers may offer different features to take advantage 
of or offer varying I/O performance levels.  

Two prominent block storage clusters currently present at CERN that can be integrated 
with OpenStack Cinder are: 

• NetApp: is a company that specializes in networked storage solutions and in turn 
offers a block storage platform. NetApp delivers a unified storage platform for 
scalability and flexibility and features clustering capabilities to maintain high 
availability.  
 

• Ceph: is a unified, open source distributed storage platform designed to present 
different types of storage from a distributed cluster. It boasts excellent 
performance, reliability and scalability. Performance and reliability can be 
enhanced by enabling Ceph caching and data striping; the technique of 
segmenting files and distributing these over separate storage devices. 

 
Both NetApp and Ceph aim to provide the same high-level features (e.g scalability, 
reliability etc) however their integration and performance when used by OpenStack 
Cinder are typically untested at CERN. Futhermore, the performance and data reliability 
of Ceph when integrated with OpenStack may be sub-optimal due to the way Cinder 
creates Ceph volumes; by default caching is not enabled and data striping is fixed to set 
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values. The latter limits the achievable performance where the default values may not be 
suitable to the application and data present on the volume. For example, it may be best to 
distribute a large number of small sized stripes over different phyiscal disks for a large 
application. 
 
This project will investigate and solve the above problems via the following aims: 
 

1. Document the deployment and configuration of OpenStack Cinder, NetApp 
and Ceph: currently no detailed documentation exists within CERN on the 
actual deployment of Cinder, NetApp and Ceph 
 

2. Integrate OpenStack Cinder with NetApp and Ceph 
 

3. Test the performance of NetApp and Ceph: we do not aim to determine which 
block storage platform is optimal but merely outline the achievable performance 
of these clusters at CERN. 
 

4. Modify OpenStack to allow per volume data striping values to be set. 
 

5. Modify OpenStack to allow a user-defined caching method to be used per 
volume. 

The rest of this report is organized as follows: Section 2 gives a detailed overview of the 
use and architectures of OpenStack, NetApp and Ceph. Section 3 outlines the process of 
integrating these together and their performance results are outlined in Section 4. We then 
describe how we introduce per volume caching and data striping  when OpenStack 
Cinder uses Ceph for block storage in Section 5 and finally we conclude in Section 6. 

Note that we offer detailed documentation on the technical details described in this report 
which covers: 

1. Installation of OpenStack 
2. Pre and Post Installation Errors with Solutions  
3. Getting Started with OpenStack 
4. OpenStack Cinder Integration with NetApp 
5. OpenStack Cinder Integration with Ceph 

This documentation can be found at: 

• https://twiki.cern.ch/twiki/bin/view/AgileInfrastructure/PackstackSlc6  (internal) 
• http://garymcgilvary.co.uk/cern.html  
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2 Background 

This section gives the necessary detailed insight into the use and architectures of 
OpenStack, Cinder, NetApp and Ceph. 

2.1 OpenStack 
The OpenStack project contains various components that individually provide compute, 
storage, networking and the dashboard but together create a functioning cloud operating 
system (OS).   

2.1.1 Overview 

Currently OpenStack (Grizzly) consists of seven core components as shown in Figure 1 
below. 

 

Figure 1. OpenStack Architecture (Pepple 2013) 

• Compute (Nova): the Infrastructure as a Service (IaaS) system providing virtual 
machines to hosts with nova-compute installed. 

• Identity Service (Keystone): provides the authentication and authorization for 
all OpenStack components. 

• Image Service (Glance): an image repository for all virtual disk images. Glance 
can also be configured to store these images on a remote cluster, such as Ceph.  

• Dashboard (Horizon): the user interface to easily control most aspects of the 
OpenStack components. As an alternative, the OpenStack API can be used. 

• Networking  (Neutron): provides “networking as a service” by allowing users to 
create their own networks and interfaces as well as manage IPs. 

• Object Storage (Swift): is a highly available and distributed object/blob store.  
• Block Storage (Cinder): provides “block storage as a service”. 
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The four components that are relevant to this project are Nova, Glance, Horizon and 
Cinder. 

2.1.2  Installation 

We installed OpenStack Grizzly on three SL6 CERN servers via Packstack from RDO; a 
tool that uses Puppet modules to deploy the various components of OpenStack on single 
or multiple servers (RDO 2013). The installation prerequistes as well as how to install 
OpenStack via Packstack is explained in our OpenStack documentation.  

As Packstack is a relatively new tool, after installation, errors appeared both on the 
Horizon interface as well as component logs signifiying that installation was not correctly 
performed. The issues faced as well as the solutions are documented at the above links. 
After such problems were resolved, we had the setup shown in Figure 2.  

One node was assigned to be the 
OpenStack controller where most 
service components were installed. In 
our case, Horizon, Keystone, Cinder, 
and Glance was installed on the 
controller node to provide a central 
server for these services to be 
accessed. 

The compute nodes had Nova installed 
to allow virtual machines to run upon 
these servers. The controller node also 
had Nova installed making this a joint 
compute node. 

Our OpenStack hosts have the following hardware specifications: 

Host CPU Disk RAM L1 Cache L2 Cache L3 Cache 

lxfssmA 2 x 2.27GHz ~40 TB 12 GB 256KB 1 MB 8 MB 

lxfssmB 2 x 2.27GHz ~40 TB 12 GB 256KB 1 MB 8 MB 

lxfssmC 2 x 2.27GHz ~6 TB 12 GB 256KB 1 MB 8 MB 

Table 1.     Hardware Specifications of OpenStack Hosts 

We see that the three hosts lxfssmA, lxfssmB, and lxfssmC have the equivalent number of 
CPUs, RAM and size of level one, two and three caches. The host lxfssmC has 
approximately 34TB less disk space available hence this was selected as a compute node 
while lxfssmA is the OpenStack controller node.  

Controller/
Compute

Compute Compute

Keystone
Cinder

Nova Nova

Glance
Nova

Horizon 

 

 

 

 

 

   Figure 2.     OpenStack Hosts and Environment 

 

 

dd 
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2.2 NetApp 
Network Appliance, or NetApp for short, is a company specializing in networked storage 
and data management solutions. 

2.2.1 Overview 

NetApp offers the NetApp filer, a disk storage device that offers varying types of storage 
over a network. NetApp filers do not use existing commodity hardware but instead use 
highly customized hardware using NetApp’s own Data ONTAP OS. This OS provides 
cluster availability, scalability and efficiency. Data ONTAP offers file-based storage by 
the protocols NFS, CIFS, FTP, TFTP and HTTP and block-based storage by the FC, 
FcoE and iSCSI protocols; we are interested in the block-based storage offerings and 
more particulary via the use of iSCSI. 

The Internet Small Computer System Interface (iSCSI) protocol is an IP based protocol 
used to let clients (initiators) communicate with I/O storage devices (targets) by sending 
SCSI packets over TCP/IP (Huffered 2003). OpenStack offers a NetApp iSCSI direct 
driver meaning the iSCSI connection goes directly to the virtual machine, as shown in 
Figure 3. 

 

  

 

 

 

         Figure 3.     High-level Overview of OpenStack and NetApp iSCSI 

When in use with OpenStack, NetApp receives iSCSI packets from the virtual machine 
which is configured to use the NetApp service via Cinder. The OpenStack virtual 
machines can then mount and make use of the remote volume, or Logical Unit Number 
(LUN); an addressable logical SCSI device that is physically connected to the SCSI 
target. The NetApp iSCSI direct driver is the driver we are interested in testing. 

2.2.2 NetApp at CERN 

The use of NetApp in CERN is highly documented mainly in conjunction with the use of 
Oracle Databases hence it appears many NetApp clusters are presently being used within 
CERN (NetApp 2013) (Daniel 2010). The specifications of the NetApp cluster we used 
was: 

• FAS2040 Storage Systems 
• Data ONTAP 8 
• 52 Disks 

Physical Host
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2.3 Ceph 
Ceph is a massively scalable, open source, software-defined storage system that runs on 
commodity hardware (Ceph 2013).  

2.3.1 Overview 
Ceph delivers three types of storage: object, block and filesystem.  
 
These storage types are offered from the Ceph Storage Cluster known as the Reliable, 
Autonomic, Distributed Object Store (RADOS). RADOS is self-managing, self-healing, 
has no single points of failure and can be massively scalable. The object store is accessed 
via the RADOS Gateway (RGW) and block storage can be provisioned through the 
RADOS Block Device (RBD) service, both of which use librados to access RADOS.  
These components and their interactions are shown in the architecture diagram below.  

 
                         Figure 4.     Ceph Architecture (Ceph 2013) 

To provide high reliability and performance, the RADOS service consists of a number of 
monitoring node daemons (MONs) and object storage daemons (OSDs). The purpose of 
MONs are to maintain a master copy of the cluster map containing the cluster 
membership, configuration and state; many of these daemons may run where at least 3 is 
recommended. OSDs serve and store objects to and from clients; again many of these 
daemons may run concurrently upon a Ceph cluster to improve performance.  
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When in use with OpenStack Cinder, 
Ceph uses RBD, and more specifically 
the librbd library, to interact with 
RADOS and subsequent OSDs, as 
shown in Figure 5. This also shows 
libvirt, a tool to interact and manage 
virtualization on Linux. This 
configures the OpenStack 
QEMU/KVM virtual machines to use 
librbd, in turn allowing RBD block 
devices to be attached and I/O 
operations to be performed on the 
remote cluster. Not only can Ceph be 
integrated with Cinder to make use of 
block devices, it can be integrated with OpenStack’s image service Glance to provide a 
backend for virtual machine images on RBD volumes.  

2.3.2 RBD Striping 

Regardless of whether Cinder or Glance is integrated with Ceph, to increase I/O 
performance, data stored upon these RBD volumes is striped across multiple Ceph 
objects and stored by RADOS meaning a single disk’s performance does not become the 
bottleneck when performing I/O operations. Ceph uses a modified RAID 0 data 
distribution where data is stored upon one object up to a fixed size then the next object is 
used to store the data, and so on. Two important variables exist to control the how data 
striping operates:  

• stripe_unit: the size of a single stripe unit. 
 

• stripe_count: the number of objects to distribute segments of size ‘stripe unit’ 
before looping back to the first object. 

Upon creation of a RBD volume via OpenStack, Ceph provides default values for these 
variables and hence data upon these volumes are always striped in the same way 
regardless of whether the application/data running upon the volume would best be suited 
to another striping setup to increase its performance. This is one of the problems we aim 
to solve.  

2.3.3 RBD Caching 

By default, OpenStack does not perform any caching however Ceph can take advantage 
of caching via librbd. As librbd cannot take advantage of the Linux page cache, it 
provides its own in-memory implementation of caching. This is however disabled by 
default and Ceph does this for data safety. A host failure or power disruption could 
corrupt data if QEMU exits uncleanly or data may even be lost.  

 

 

OSDs MONs
RADOS Protocol
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QEMU/KVM

libvirt
configures

 

 

 

 

 

 

     Figure 5.     libvirt and librbd 
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RBD caching can be enabled in two ways: 

1. Modify the /etc/ceph/ceph.conf file – Ceph’s configuration file – to include: 

rbd cache = true   // for write-back caching  (1) 
rbd cache max dirty = 0 // for write-through caching (2) 

If (1) is only included, write-back caching is performed by default; this is 
recommended by Ceph if caching is enabled. We can  select write-though by 
including (2) meaning writes only return when the data is present on all replicas but 
reads can come from the cache. Other caching methods (i.e a mix of both strategies) 
can be found at: http://ceph.com/docs/next/rbd/rbd-config-ref/#rbd-cache-config-
settings 

2. Modify the /etc/nova/nova.conf file – Nova’s configuration file – to include: 

disk_cachemodes=”network=writeback” 

This simply enables Ceph caching and sets the cache policy to writeback; writethough 
could also be entered here. It does this by entering the selected policy into an XML 
file which virsh – the command line interface to libvirt - uses to attach the previously 
created RBD volume to the instance. For example, this XML file would look 
something like: 

<disk type='network' device='disk'> 
  <driver name="qemu" type="raw" cache="writeback"/> 
  <source protocol="rbd" name="volume_pool/volume_name"> 
    <host name='XXX.XXX.XXX.XXX' port='6789'/> 
  </source> 
  <target dev="vdb" bus="virtio"/> 
  <auth username='volumes'> 
    <secret type='ceph' uuid='232g33rf32ed12ed2ed2'/> 
  </auth> 
</disk> 

This file specifies that the disk is accessible over the network and is accessed using 
the RBD protocol. The remote path and volume name are specified as well as the 
server connect to and the relevant authentication. The disk is then attached to the 
target device to be exposed to the guest OS. 

The user-specifed caching policy is entered from the nova.conf file and hence 
writeback caching will be employed on the Ceph client. If caching was only enabled 
via ceph.conf or not enabled at all, the cache variable within the XML would be set to 
‘none’, i.e  cache=”none”.   

2.3.4 Ceph at CERN 
CERN actively make use of their own Ceph cluster. At the time of writing, CERN was 
currently upgrading their Ceph cuttlefish ‘Andy’ cluster to  ‘Beesly’ which uses Ceph 
dumpling; all our work and experiments took place on the ‘Andy’ cluster. This cluster 
had the following specifications: 
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• 47 OSD servers, each with: 
o 24 x 3TB Hitachi CoolSpin drives (5900rpms) 
o 64 GB RAM 
o 2 x Intel(R) Xeon(R) CPU E5-2650 (16 cores in total) 
o 10Gbit ethernet NIC 

• 3 MON servers where each is an OpenStack virtual machine with 2 cores with 
4GB RAM. 
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3 Integrating OpenStack Cinder with NetApp and Ceph 

We now discuss how both NetApp and Ceph can be integrated with OpenStack Cinder. 
OpenStack Cinder uses iSCSI that employs the use of the Logical Volume Manager 
(LVM), which has the purpose of virtualizing and managing disks, to expose volumes to 
virtual machine instances. OpenStack Cinder uses a driver to create volumes of a specific 
type and by default uses the LVM iSCSI driver; this can be explicitly set in the 
/etc/cinder/cinder.conf file as: 

volume_driver=cinder.volume.drivers.lvm.LVMISCSIDriver 

If one wishes to create a volume of a different type, the volume_driver variable requires 
modification as well as the likely addition of other variables however this is dependent on 
the driver. Note that the Cinder integration with NetApp and Ceph as well as the errors 
and solutions faced can be found in much more detail than below in our OpenStack 
documentation. 

3.1 NetApp 
Integrating NetApp with OpenStack Cinder is a relatively easy process. After obtaining a 
username and password to access the NetApp cluster, we need to modify the 
/etc/cinder/cinder.conf file to include the necessary directives: 

volume_driver=cinder.volume.drivers.netapp.iscsi.NetAppDirect7mode
ISCSIDriver 
netapp_server_hostname=lxfssmXXXX.cern.ch 
netapp_server_port=8088 
netapp_login=username 
netapp_password=password 

This configuration specifies that the NetApp iSCSI direct driver should be used and the 
iSCSI target is located on the specified host via port 8088. We also enter the username 
and password to allow OpenStack access to the NetApp service. Many other directives 
are available however they are not mandatory to use the CERN NetApp services. 

In theory, one should now be able to create NetApp volumes via the Horizon interface 
however in our experience things were much more difficult due to permission problems. 
These originated from Cinder not having the required permission to successfully issue 
API calls on the NetApp filer. The required API calls to gain access to were: 

login-*,api-clone-start,api-clone-list-status,api-nfs-exportfs-
storage-path,api-lun-*,api-volume-options-list-*,api-volume-list-
*,api-igroup-*,api-iscsi-*,api-storage-shelf-list-info,cli-version 

After the correction of a few minor errors, OpenStack was then able to create, attach, 
format and mount NetApp volumes.  
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3.2 Ceph 
To integrate Ceph successfully with OpenStack Cinder, one must first obtain a 
configuration file (ceph.conf) and a keyring (ceph.client.pool_name.keyring) to access a 
particular RADOS pool. These are segregated areas for storing data which offer 
replication, restricted access etc. We had access to the following pools: 

• volumes: where we store the RBD block volumes 
• images: where we store the virtual machine images  

We discuss how to integrate both OpenStack volumes (Cinder) and images (Glance) with 
Ceph below but first we discuss the necessary prerequisites. 

3.2.1 Prerequisites 

The necessary prerequisites are discussed in our OpenStack documentation however we 
do highlight one important requirement here. At the time of writing, the Red Hat version 
of QEMU did not support the attachment of RBD volumes and when doing so resulted in 
the error: 

“internal error unable to execute QEMU command '__com.redhat_drive_add': Device 
'drive-virtio-disk1' could not be initialized” 

To avoid this, QEMU needs to be replaced with the QEMU RPMs available from Ceph; 
(http://ceph.com/packages/qemu-kvm/centos/x86_64/). 

3.2.2 Block Storage 

Similar to the integration of NetApp, Ceph requires the RBD driver to be specified as 
well as directives relating to authentication. Again these must be placed within the 
/etc/cinder/cinder.conf file and are: 

volume_driver=cinder.volume.drivers.rbd.RBDDriver 
rbd_pool=volumes 
rbd_user=volumes 
rbd_secret_uuid=the_secret_key 
glance_api_version=2 
 

This configuration shows that the RBD driver should be used and the remote volumes are 
accessible within the pool ‘volumes’ and are accessible only by user ‘volumes’. The 
generated secret key is tied to our Ceph keyring enabling virsh to attach the remote 
volume to our instance. Note that the remote server hostname is not present in this 
configuration file however it must be specified within /etc/ceph/ceph.conf. For example: 

[global] 
  mon host = ceph01.cern.ch 

After correcting a few errors as discussed in our OpenStack documentation, we were able 
create, attach, format and mount Ceph volumes. 
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3.2.3 Image Storage 

Ceph not only provides block storage but allows RBD volumes to become a backend for 
storing Glance images. To configure Glance to use Ceph, we must modify/edit 
/etc/glance/glance-api.conf: 

default_store=rbd 
rbd_store_user=images 
rbd_store_pool=images 
rbd_store_ceph_conf=/etc/ceph/ceph.conf 

The first directive is present within glance-api.conf and must be modified from its initial 
value ‘file’ to ‘rbd’. In similar fashion of configuring Cinder, we must include the pool 
name and user which has access to this pool. Finally, the Ceph configuration file must be 
listed to ensure the Glance service knows how to access the Ceph cluster. 

After creating a Glance image, we should now see that the image now resides on Ceph 
within the correct pool as opposed to on the OpenStack controller node. 

3.3 Cinder Multi-backend 
So far we have only described how a single driver (e.g NetApp or Ceph) can be used to 
create and attach volumes from a single source. OpenStack Cinder allows multiple 
drivers to be used concurrently without the need to modify the Cinder configuration file 
and restart the service each time a user wishes to create a volume from a different source.  
To do this we have to set the following directives in /etc/ceph/ceph.conf: 

enabled_backends=netapp-driver,rbd-driver 
 
[netapp-driver] 
#Normal NetApp directives 
… 
volume_backend_name=netapp_backend 
 
[rbd-driver] 
#Normal RBD directives 
… 
volume_backend_name=rbd_backend 

First we define enabled_backends to include the names of the configuration groups and 
within these groups we specify the directives for the respective drivers, for example, 
those outlined above for NetApp and Ceph. We must also give the enabled backends a 
name. For each driver listed, the users have to manually create a Cinder volume type and 
link this type to the backend name meaning a user can select the driver they wish to use 
via the Horizon interface. This looks as follows: 

 

 

   Figure 6.     Volume Type Selection via Horizon   
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The process of manually creating Cinder volume types for each driver and linking this to 
the backend name is one that can be performed automatically by OpenStack with some 
additions. We have modified the OpenStack source (cinder/manager.py) to include this 
functionality. 

types_reset = False 
 

def create_volume_type(self, context, volume_driver):   
volume_types.create(context,volume_driver.lower(),extra_specs={}) 

 
def destroy_volume_type(self, context): 
   vts = volume_types.get_all_types(context) 

for x in vts: 
   volume_types.destroy(context,vts[x]["id"]) 
 

def init_volume_types(self,context, volume_driver): 
type_present = False 
  
if VolumeManager.types_reset == False: 
   self.destroy_volume_type(context) 
   VolumeManager.types_reset = True 
 
vts = volume_types.get_all_types(context) 
    

   for x in vts: 
    if volume_driver.lower() in vts[x]["name"]: 
          type_present = True 
if type_present == False: 
    self.create_volume_type(context, volume_driver) 

When the first driver is loaded, we call init_volume_types which then destoys all 
previous volume types by calling the destroy function from the OpenStack 
volume_types.py class. We then create the volume type based on the volume driver 
name and link it to a self created backend name. When subsequent drivers are loaded, we 
ensure previous volume types remain and again create the volume type based on the 
drivers name. This removes the requirement of the user manually creating volume types 
for each of their drivers. 
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4 The Performance of NetApp and Ceph 

We now describe the performance achieved when running a number of benchmarks upon 
the NetApp and Ceph clusters. 

4.1 Benchmark Setup 
To benchmark a cluster, we instantiated three virtual machines and attached and mounted 
a disk of a specific size from the respective cluster to each virtual machine. The three 
disk sizes were 100GB, 200GB and 400GB and were each mounted to the virtual 
machines A, B and C respectively; 400GB was the largest disk size we could create using 
the NetApp cluster. Our experimental setup is shown below. 

The purpose of this configuration was  to: 

1. determine the performance difference 
between NetApp and Ceph in their 
respective  setups. 

2. determine if any performance differences 
exist dependent on the size of the disk. 

3. determine if there is any performance 
degradation if other disks present within the 
cluster are being heavily used; we performed 
this by running the benchmarks on each disk 
at the same time.  
 
 

These experiments were first performed on the NetApp cluster and soon after, upon the 
Ceph cluster, by running benchmarks upon the attached formatted disk. Each benchmark 
was executed five times and the results were averaged. The results shown display the 
results from the best performing disk from either the 100GB, 200GB and 400GB disks. 

4.2 Benchmarks 
We used three benchmarks to test the performance of NetApp and Ceph to get a better 
understanding of the performance of each cluster. The benchmarks used are described in 
the following subsections. 

4.2.1 hdparm  

hdparm is a disk performance benchmarking and configuration tool. We used hdparm to 
test the speed of buffered, cached and reads (Aspinwall 2009).  

Buffered reads use the file system buffer cache hence hdparm measures the speed of 
reading through this cache to the disk without caching any data previously. Cached reads 
are performed directly from the cache hence hdparm measures the speed when reading 
from the cache only. Finally hdparm also measures the speed of direct reads where the 

 

 

 

 

 

 

 Figure 7.     Benchmark Setup 
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file system buffer cache is bypassed allowing applications to perform asynchrounous 
overlapping I/O operations. 

4.2.2 FIO 

FIO: the Flexible I/O Tester is a workload generator and benchmarking tool (FIO 2013). 
We use FIO to measure aggregate read and write bandwidth. To use FIO, one must create 
a job description file which describes the workloads to be executed. As CERN is quoted 
to perform 20% writes and 80% reads, we created multiple job description files that 
mimic the same level of I/O operations for both sequential and random read and writes. 
An example of the latter is displayed below: 

[read-write] 
rw=randrw 
size=16g 
directory=/root/disk/fio/CERN/rrw 
blocksize=256k 
numjobs=25 
nrfiles=1 
filesize=320m 
runtime=10m 
 
[data02] 
rw=randread 
size=16g 
directory=/root/disk/fio/CERN/rrw/d2 
blocksize=256k 
numjobs=25 
nrfiles=1 
filesize=320m 
runtime=10m 
 
[data03] 
rw=randread 
size=16g 
directory=/root/disk/fio/CERN/rrw/d3 
blocksize=256k 
numjobs=25 
nrfiles=1 
filesize=320m 
runtime=10m 
 
[data04] 
rw=randread 
size=16g 
directory=/root/disk/fio/CERN/rrw/d4 
blocksize=256k 
numjobs=25 
nrfiles=1 
filesize=320m 
runtime=10m 

This file specifies that four processes execute: one to perform random read and write 
operations and the remaining three to randomly read data. In this configuration, direct I/O 
is disabled however can be added by specifying direct=1. Each process has a buffer 
cache of 256KB and creates 25 instances of itself to operate over its own 320MB file 
located within the directory listed. The read and write processes halt once 16GB of data 
has been read and writen. If these operations have not completed within 10 minutes, the 
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processes terminate and the results displayed. These results are summarized at the end of 
each benchmarking run; an example is shown below. 

Run status group 0 (all jobs): 
   READ: io=28219MB, aggrb=110442KB/s, minb=660KB/s, maxb=2457KB/s, 
mint=133343msec, maxt=261638msec 
  WRITE: io=3781.3MB, aggrb=14799KB/s, minb=591KB/s, maxb=679KB/s, 
mint=227813msec, maxt=261638msec 
 
Disk stats (read/write): 
  vdb: ios=120303/18169, merge=0/947355, ticks=10116683/53279160, 
in_queue=61857457, util=100.00%  
  

The result we are interested in the aggregate bandwidth for each process (underlined), i.e 
the combined bandwidth for all process instances for read and write operations.  

4.2.3 dd 

dd is the Linux function used to covert and copy files (GNU 2013). This function 
however displays the read and write speeds when writing to and reading from files. We 
used dd to read and write from 1GB and 10GB files and recorded the speeds achieved. 
An example of the former case is shown below. 

dd if=/dev/zero of=1GBFile bs=1073741824 count=1 &> write.txt (A) 
dd of=/dev/zero if=1GBFile bs=1073741824 count=1 &> read.txt (B) 

We see that to create a file (A), we take the input from /dev/zero with a block size of 
1GB, output the contents to a file named 1GBFile and capture the function’s output 
within write.txt; this process is similar of reads as shown in (B). In this configuration, 
direct I/O is disabled however is can be enabled by specifying oflag=direct. To test the 
affect of virtual machine caching, each execution was run when the cache was enabled 
and then disabled (or emptied); the latter can be performed by executing: 

sync; echo 3 > /proc/sys/vm/drop_caches 

4.3 Benchmark Results 
We now show the results obtained from running the above benchmarks on NetApp and 
Ceph. Note that the NetApp and Ceph clusters have different configurations, varying 
numbers and types of hard disks as well as different network connections; 1Gbit and 
10Gbit for the NetApp and Ceph clusters respectively. Hence our aim is not to determine 
which cluster is best overall but to test the cluster’s achievable performance in their 
respective configurations.  

4.3.1 NetApp versus Ceph 

Firstly we see the results from the hdparm benchmark in Figure 8. The speed of cached 
reads are similar for both NetApp and Ceph where NetApp performs only slightly better 
at approximately 6GB/s. However, Ceph outperforms Netapp for both buffered and direct 
reads by being approximately two and eight times respectively.  
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Similar to hdparm, FIO (Figure 9) also shows that Ceph outperforms NetApp both when 
Ceph caching is disabled and enabled; by default Ceph caching is disabled. Firstly, taking 
the scenario when Ceph caching is disabled, the speed of sequential reads are similar to 
the buffered read performance of hdparm; the type of reads hdparms uses. Furthermore, 
random reads as well as random and sequential writes are also faster using Ceph but with 
less of a difference between the two. 

Secondly, when Ceph writeback caching is enabled upon the host, we see that the 
performance gap between NetApp and Ceph widens as well as the perforance gap 
between the non-cached version. For random and sequential reads, Ceph can be 
approximately three times as faster than NetApp when caching is enabled; similarly, 
Ceph’s write performance can be four times faster. In our experience, little performance 
gain is achieved using writethrough caching with Ceph. 

Figure 10.     dd Benchmark Results 

Finally, running the dd benchmark in the same way as hdparm and FIO shows some 
different results. We see from Figure 9 that NetApp is faster at writing to both a 1GB and 
10GB file however Ceph is typically faster at reading these files. We also see the 

 

 

 

   

 

 

 

    Figure 8.     hdparm Benchmark Results 

 

 

 

 

 

 

 

   

 

 

 

    Figure 9.     FIO Benchmark Results 
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performance differences when virtual machine caching is either enabled or disabled 
however it is difficult to provide an overall comparison when either method is employed. 
Despite this, we can see that the use of the virtual machine cache can be beneficial for 
both NetApp and Ceph when the speed of reading a 1GB file is approximately 2.5 GB/s. 

As all benchmarks were run multiple times on the three different sized disks, we found 
that the performance of each disk usually remains equal despite the size being different 
for both NetApp and Ceph; of course there were a few exceptions where some disk’s 
performance is much larger or less than another however no correlation could be found 
between disk size and achievable performance. 

4.3.2 Miscellaneous: Direct and Concurrent Benchmarks 

By default, the above benchmarks were performed with direct I/O disabled and each 
benchmark was performed independently, i.e. only upon one disk at a time. We also 
performed the same benchmarks with direct I/O. It was found that the random read and 
write performance increased for both NetApp and Ceph however the sequential read and 
write performance only slightly increased with Ceph and remained unchanged with 
NetApp. 

Executing the same benchmark on all three mounted disks concurrently did however 
decrease NetApp’s achievable performance by approximately 50% for both the FIO and 
dd benchmarks. The performance of FIO when executing concurrently on our three Ceph 
volumes remained unchanged however a slight decrease in performance was observed 
when running the dd benchmark. This can be explained by the different configurations of 
the NetApp and Ceph clusters and in particular the network speeds available to each.  
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5 Ceph: Adding Striping and Caching to OpenStack 
Using OpenStack with Ceph by default does not allow users to specify the stripe_count 
and stripe_unit parameters when volumes are created; defaults values are always used for 
all volumes. Similarly, Ceph caching is disabled by default however when caching is 
enabled via the ceph.conf file, this caching method is used for all RBD volumes and as 
such, users are not able to specify the caching method they wish to use per volume. 

We now describe how we have modified OpenStack to allow these features to be 
enabled. 

5.1 Adding RBD Striping 
To obtain the stripe_count and stripe_unit parameters from the user, we first have to add 
the respective text fields to the Horizon interface when a user creates a volume; we do 
this by modifying horizon/openstack_dashboards/dashboards/project/volumes/forms.py 
The stripe fields should however  only appear when the RBD driver is in use. We do this 
by creating a volume type for each of the drivers enabled (see Section 3.3) and when the 
volume type associated with the RBD driver is selected (in our case this is 
‘cinder.volume.drivers.rbd.rbddriver’) the stripe_count and stripe_unit text fields 
dynamically appear. This is depicted in Figure 11. 

 

 

 

 

 

 

 

 

 

 

Figure 11.     The modified ‘Create Volume’ submission form including stripe parameters 
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This dynamic appearance is achieved by using OpenStack’s ‘switchable’ and ‘switched’ 
fields. By marking a field as switchable, we specify that this is a field which is used to 
instruct other fields (i.e the switched fields) to display or not dependent on the option 
selected. In our case, the volume type field is switchable and the stripe fields are of type 
switched: 

type = forms.ChoiceField(label=_("Type"), widget=forms.Select( 
                             attrs={'class': 'switchable', 
                                    'data-slug': 'type'}), 
                                    required=False) 
 

stripe_count = forms.IntegerField(min_value=1, label=_("Stripe Count"), 
        widget=forms.TextInput(attrs={ 

            'class': 'switched', 
               'data-switch-on': 'type', 
               'data-type-cinder.volume.drivers.rbd.rbddriver': 

  _('Stripe Count')}), required=False) 
 

stripe_unit = forms.IntegerField(min_value=1, label=_("Stripe Unit"), 
     widget=forms.TextInput(attrs={ 
            'class': 'switched', 
            'data-switch-on': 'type', 
            'data-type-cinder.volume.drivers.Rbd.rbddriver': 
            _('Stripe Unit')}), required=False) 
 

The stripe fields will then appear when the string cinder.volume.drivers.rbd.rbddriver is 
selected via the type field. If stripe values are entered, the values subsequently entered are 
then sanitized to ensure they are valid according to the size of the disk and then are 
passed as parameters to many method calls which store these values in the database and 
create the volume. We perform these checks by using the following snippet of code: 

try: 
stripe_count = int(data['stripe_count']) 
stripe_unit = int(data['stripe_unit']) 
 
if ((int(data['size']) * 1073741824) %(stripe_count * stripe_unit) != 0): 
     error_message = _('Please Enter Valid Striping Parameters!') 
                        raise ValidationError(error_message) 

except Exception: 
stripe_count = 0 
stripe_unit = 0 
             

volume = cinder.volume_create(request, 
                           data['size'], 
                           data['name'], 
                           data['description'], 
                           data['type'], 
                           snapshot_id=snapshot_id, 
                           image_id=image_id, 
                           metadata=metadata, 
                           stripe_count=stripe_count, 
                           stripe_unit=stripe_unit) 

First we check if values are entered or not by using try except. Leaving either of these 
fields empty will cause an exception to occur and default values to be set. If values are 
present, they are check to ensure that the stripe parameters are correct according to the 
disk size, if not an error message is displayed to the user. We then pass these values to the 
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cinder.volume_create method which then passes these values to subsequent method calls 
that are used to create volumes. The following files containing methods we have 
modified are:  

• horizon/openstack_dashboard/api/cinder.py 
• python-cinderclient/cinderclient/v1/volumes.py 
• python-cinderclient/cinderclient/v2/volumes.py 
• cinder/api/v1/volumes.py 
• cinder/api/v2/volumes.py 
• cinder/volume/api.py 
• cinder/volume/flows/create_volume/__init__.py 
• cinder/volume/drivers/rbd.py 

Apart from the latter RBD driver, the modifications to the other files are small hence they 
are not described here. We show the changes we have made to the RBD driver to allow 
the stripe parameters to be specified during volume creation below: 

rbd_stripe_count = int(volume['stripe_count']) 
rbd_stripe_unit = int(volume['stripe_unit']) 
 
if rbd_stripe_count != 1: 
     image_format = 2 
else: 
     image_format = 1 
 
args = ['rbd', 'create', 
        '--pool', self.configuration.rbd_pool, 
        '--size', size, 
        '--stripe_count', rbd_stripe_count, 
        '--stripe_unit', rbd_stripe_unit, 
        '--image-format', image_format, 
        volume['name']] 
self._try_execute(*args) 

We first retrieve the stripe parameter values from the database and then perform a simple 
check to determine if the values are default or not. Currently Ceph has two formats of 
images which can be used to create a volume. The second image format is the only 
format that allows non-default striping values to be used during creation. We therefore set 
the image format number dependent on whether default stripe parameter values were 
entered or not. Finally, we append the ‘—stripe_count’, ‘—stripe_unit’ and ‘—image-
format’ parameters to the command that is executed to create the volume. 

One can confirm that the volume has been properly created using the specified stripe 
parameters by executing the rbd info volume_name on the command line.  

We have submitted these modifications upstream to the OpenStack project and hopefully 
will be merged into a future release of OpenStack. These modifications can be found at: 

• https://review.openstack.org/#/c/47469/ 
• https://review.openstack.org/#/c/47471/ 
• https://review.openstack.org/#/c/47473/ 
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5.2 Adding RBD Caching 
In order to allow different per-volume caching policies to be selected, we first have to 
make available the caching policies to the user via the Horizon interface when a user 
wishes to attach an existing volume to an instance.  This is shown in Figure 12. 

 

                

Figure 12.     The modified ‘Attach Volume’ form including per-volume caching policies 

We add the selection field similar to the way the ‘type’ field is added in the case of 
introducing striping parameters. 

cache_policy = forms.ChoiceField(label=_("Caching Method"), required=False) 
 

Afterwards the the cache policies are then populated; we only offer two types of caching: 
writeback and writethrough. The selected policy is then passed through many method 
calls and is eventually entered dynamically into the XML file created (see Section 2.3.3) 
to allow libvirt to attach the volume to the instance. This XML is created within 
nova/nova/virt/libvirt/volume.py and allows the user defined preference to be set: 

conf.device_type = disk_info['type'] 
conf.driver_format = "raw" 
conf.driver_cache = disk_info['cache_policy'] 
conf.target_dev = disk_info['dev'] 
conf.target_bus = disk_info['bus'] 
conf.serial = connection_info.get('serial') 

Currently, we have an ‘unstable’ version of this feature available and requires more 
implementation and stability before being submitted to OpenStack for integration in 
future releases. 
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6 Conclusions 

In this report, we have outlined the progress made during the project ‘Implementation of 
OpenStack Cinder and Integration with NetApp and Ceph.’ First we showed the 
infrastructure made available to this project and how OpenStack was deployed upon these 
servers; a process that was documented to allow future employees and summer students 
to find it easier to install the open source platform.  

The presence of NetApp and Ceph clusters within CERN gave us the opportunity to test 
their ease of integration with OpenStack. We found that in theory, integration is easy and 
can be achieved by entering a small number of lines within the Cinder configuration file, 
however in reality many problems existed, in particular with NetApp.  

The performance of both these storage clusters were tested in their respective 
configurations and because of this, a direct comparsion and ultimate conclusion outlining 
which is best cannot be offered. However our results did show that Ceph is typically 
faster at reading data however it is difficult to include which is best for writing files. The 
appropriate cluster for use at CERN would not only be which offers the best performance 
but also provides the required features (scalability, relability etc) dependent on the 
applications using block-storage volumes. 

To potentially increase the performance of Ceph storage volumes, we introduced per-
volume data striping when creating volumes. Currently, data striping values are set by 
default and cannot be changed when Ceph is integrated with OpenStack. By allowing 
user-specified stripe_count and stripe_unit parameters to be set, data can now be striped 
optimally dependent on the application or data present on the RBD volume. We outlined 
how this feature was implemented and we hope that it’s submission upstream to 
OpenStack will allow this feature to be available to all in a future release.  

Ceph caching – a feature which is disabled by default – is also enabled to increase 
performance. Dependent on the application/data present on the volume, the user can 
select either the writeback or writethrough caching polices for each of the volumes to be 
attached to an instance. At the time of leaving CERN, this implementation was still in 
progress and hence becomes future work. Despite this, we did however show that using 
writeback caching can potentially increase read and write performance by up to 3 or 4 
times and writethrough caching gives only a slight performance increase. 
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