
The Implementation of
OpenStack Cinder and
Integration with NetApp
and Ceph

September 2013

Author:
Gary McGilvary

Supervisor(s):
Thomas Oulevey

CERN openlab Summer Student Report 2013

Project Specification
CERN is establishing a large scale private cloud based on OpenStack as part of the
expansion of the computing infrastructure for the Large Hardon Collider (LHC).

Depending on the application running on the cloud, some virtual machines require large
disk capacities or high reliability/performance volumes. This project involves the
configuration, deployment and testing of OpenStack Cinder as well as the integration
with other block storage alternatives such as NetApp and Ceph.

A performance analysis and comparison between these storage mechanisms will be
undertaken to determine the most suitable for use at CERN. Furthermore, modifications
will also be made to OpenStack to allow user-specified Ceph data striping values to be
set during volume creation as well as the Ceph/QEMU caching method upon volume
attachment to an instance.

Abstract

With the ever increasing amount of data produced from Large Hadron Collider (LHC)
experiments, new ways are sought to help analyze and store this data as well as help
researchers perform their own experiments. To help offer solutions to such problems,
CERN has employed the use of cloud computing and in particular OpenStack; an open
source and scalable platform for building public and private clouds.

The OpenStack project contains many components such as Cinder used to create block
storage that can be attached to virtual machines and in turn help increase performance.
However instead of creating volumes locally with OpenStack, others remote storage
clusters exist offering block based storage with features not present in the current
OpenStack implementation; two popular solutions are NetApp and Ceph.

Two features Ceph offers is the ability to stripe data stored within volumes over the
distributed cluster as well as locally cache this data, both with the aim of improving
performance. When in use with OpenStack, Ceph performs default data striping where
the number and size of stripes is fixed and cannot be changed dependent on the volume to
be created. Similarly, Ceph does not perform data caching when integrated with
OpenStack.

In this project we outline and document the integration of NetApp and Ceph with
OpenStack as well as benchmark the performance of the NetApp and Ceph clusters
already present at CERN. To allow Ceph data striping, we modify OpenStack to take the
number and size of stripes input via the user to create volumes whose data is then striped
according to the values they specify. Similarly, we also modify OpenStack to enable
Ceph caching and allow users to select the caching policy they require per-volume. In
this report, we describe how these features are implemented.

Table of Contents
1	
 Introduction ... 6	

2	
 Background... 8	

2.1	
 OpenStack ...8	

2.1.1	
 Overview...8	

2.1.2	
 Installation...9	

2.2	
 NetApp ...10	

2.2.1	
 Overview...10	

2.2.2	
 NetApp at CERN...10	

2.3	
 Ceph...11	

2.3.1	
 Overview...11	

2.3.2	
 RBD Striping ...12	

2.3.3	
 RBD Caching ..12	

2.3.4	
 Ceph at CERN ..13	

3	
 Integrating OpenStack Cinder with NetApp and Ceph.. 15	

3.1	
 NetApp ...15	

3.2	
 Ceph...16	

3.2.1	
 Prerequisites ...16	

3.2.2	
 Block Storage ...16	

3.2.3	
 Image Storage ..17	

3.3	
 Cinder Multi-backend ...17	

4	
 The Performance of NetApp and Ceph... 19	

4.1	
 Benchmark Setup...19	

4.2	
 Benchmarks ...19	

4.2.1	
 hdparm..19	

4.2.2	
 FIO..20	

4.2.3	
 dd..21	

4.3	
 Benchmark Results ..21	

4.3.1	
 NetApp versus Ceph...21	

4.3.2	
 Miscellaneous: Direct and Concurrent Benchmarks...................................23	

5	
 Ceph: Adding Striping and Caching to OpenStack ... 24	

5.1	
 Adding RBD Striping ..24	

5.2	
 Adding RBD Caching ...27	

6	
 Conclusions .. 28	

7	
 Acknowledgements... 28	

8	
 Bibliography .. 29	

6 | P a g e

1 Introduction
Since 2002, CERN has taken a globally leading role in developing continuously
operational Grids such as the Worldwide LHC Computing Grid to handle the large
volumes of data, simulation runs and data analyses required by researchers using the
LHC. Nowadays with the ever increasing computational and data demands produced
from the LHC experiments, CERN is looking at new ways to help store and analyze LHC
data as well as find new ways to support their researchers and one such way is turning to
the cloud; more specifically, using OpenStack (Andrade, et al. 2012).

OpenStack is a open and scalable cloud platform for building public and private clouds
(OpenStack 2013). Hence the use of OpenStack allows CERN to support the data and
compute demands resulting from LHC experiments as well as optimize their current IT
infrastructure. As part of the expansion of the computing infrastructure for the LHC
experiements, CERN is establishing a large scale private cloud based on OpenStack. Due
to the large amounts of data researchers need to work with and dependent on the
application running on the cloud, some virtual machines may require large disk capacities
or high reliability/performance volumes.

The OpenStack Cinder project aims to provide such features by offering “block storage
as a service” allowing storage volumes to be attached to virtual machine instances.
Typically these volumes reside locally upon nodes within the OpenStack cloud however
Cinder can leverage other block storage infrastructures served from remote clusters.
These alternative block storage providers may offer different features to take advantage
of or offer varying I/O performance levels.

Two prominent block storage clusters currently present at CERN that can be integrated
with OpenStack Cinder are:

• NetApp: is a company that specializes in networked storage solutions and in turn
offers a block storage platform. NetApp delivers a unified storage platform for
scalability and flexibility and features clustering capabilities to maintain high
availability.

• Ceph: is a unified, open source distributed storage platform designed to present
different types of storage from a distributed cluster. It boasts excellent
performance, reliability and scalability. Performance and reliability can be
enhanced by enabling Ceph caching and data striping; the technique of
segmenting files and distributing these over separate storage devices.

Both NetApp and Ceph aim to provide the same high-level features (e.g scalability,
reliability etc) however their integration and performance when used by OpenStack
Cinder are typically untested at CERN. Futhermore, the performance and data reliability
of Ceph when integrated with OpenStack may be sub-optimal due to the way Cinder
creates Ceph volumes; by default caching is not enabled and data striping is fixed to set

7 | P a g e

values. The latter limits the achievable performance where the default values may not be
suitable to the application and data present on the volume. For example, it may be best to
distribute a large number of small sized stripes over different phyiscal disks for a large
application.

This project will investigate and solve the above problems via the following aims:

1. Document the deployment and configuration of OpenStack Cinder, NetApp
and Ceph: currently no detailed documentation exists within CERN on the
actual deployment of Cinder, NetApp and Ceph

2. Integrate OpenStack Cinder with NetApp and Ceph

3. Test the performance of NetApp and Ceph: we do not aim to determine which
block storage platform is optimal but merely outline the achievable performance
of these clusters at CERN.

4. Modify OpenStack to allow per volume data striping values to be set.

5. Modify OpenStack to allow a user-defined caching method to be used per
volume.

The rest of this report is organized as follows: Section 2 gives a detailed overview of the
use and architectures of OpenStack, NetApp and Ceph. Section 3 outlines the process of
integrating these together and their performance results are outlined in Section 4. We then
describe how we introduce per volume caching and data striping when OpenStack
Cinder uses Ceph for block storage in Section 5 and finally we conclude in Section 6.

Note that we offer detailed documentation on the technical details described in this report
which covers:

1. Installation of OpenStack
2. Pre and Post Installation Errors with Solutions
3. Getting Started with OpenStack
4. OpenStack Cinder Integration with NetApp
5. OpenStack Cinder Integration with Ceph

This documentation can be found at:

• https://twiki.cern.ch/twiki/bin/view/AgileInfrastructure/PackstackSlc6 (internal)
• http://garymcgilvary.co.uk/cern.html

8 | P a g e

2 Background

This section gives the necessary detailed insight into the use and architectures of
OpenStack, Cinder, NetApp and Ceph.

2.1 OpenStack
The OpenStack project contains various components that individually provide compute,
storage, networking and the dashboard but together create a functioning cloud operating
system (OS).

2.1.1 Overview

Currently OpenStack (Grizzly) consists of seven core components as shown in Figure 1
below.

Figure 1. OpenStack Architecture (Pepple 2013)

• Compute (Nova): the Infrastructure as a Service (IaaS) system providing virtual
machines to hosts with nova-compute installed.

• Identity Service (Keystone): provides the authentication and authorization for
all OpenStack components.

• Image Service (Glance): an image repository for all virtual disk images. Glance
can also be configured to store these images on a remote cluster, such as Ceph.

• Dashboard (Horizon): the user interface to easily control most aspects of the
OpenStack components. As an alternative, the OpenStack API can be used.

• Networking (Neutron): provides “networking as a service” by allowing users to
create their own networks and interfaces as well as manage IPs.

• Object Storage (Swift): is a highly available and distributed object/blob store.
• Block Storage (Cinder): provides “block storage as a service”.

9 | P a g e

The four components that are relevant to this project are Nova, Glance, Horizon and
Cinder.

2.1.2 Installation

We installed OpenStack Grizzly on three SL6 CERN servers via Packstack from RDO; a
tool that uses Puppet modules to deploy the various components of OpenStack on single
or multiple servers (RDO 2013). The installation prerequistes as well as how to install
OpenStack via Packstack is explained in our OpenStack documentation.

As Packstack is a relatively new tool, after installation, errors appeared both on the
Horizon interface as well as component logs signifiying that installation was not correctly
performed. The issues faced as well as the solutions are documented at the above links.
After such problems were resolved, we had the setup shown in Figure 2.

One node was assigned to be the
OpenStack controller where most
service components were installed. In
our case, Horizon, Keystone, Cinder,
and Glance was installed on the
controller node to provide a central
server for these services to be
accessed.

The compute nodes had Nova installed
to allow virtual machines to run upon
these servers. The controller node also
had Nova installed making this a joint
compute node.

Our OpenStack hosts have the following hardware specifications:

Host CPU Disk RAM L1 Cache L2 Cache L3 Cache

lxfssmA 2 x 2.27GHz ~40 TB 12 GB 256KB 1 MB 8 MB

lxfssmB 2 x 2.27GHz ~40 TB 12 GB 256KB 1 MB 8 MB

lxfssmC 2 x 2.27GHz ~6 TB 12 GB 256KB 1 MB 8 MB

Table 1. Hardware Specifications of OpenStack Hosts

We see that the three hosts lxfssmA, lxfssmB, and lxfssmC have the equivalent number of
CPUs, RAM and size of level one, two and three caches. The host lxfssmC has
approximately 34TB less disk space available hence this was selected as a compute node
while lxfssmA is the OpenStack controller node.

Controller/
Compute

Compute Compute

Keystone
Cinder

Nova Nova

Glance
Nova

Horizon

 Figure 2. OpenStack Hosts and Environment

dd

10 | P a g e

2.2 NetApp
Network Appliance, or NetApp for short, is a company specializing in networked storage
and data management solutions.

2.2.1 Overview

NetApp offers the NetApp filer, a disk storage device that offers varying types of storage
over a network. NetApp filers do not use existing commodity hardware but instead use
highly customized hardware using NetApp’s own Data ONTAP OS. This OS provides
cluster availability, scalability and efficiency. Data ONTAP offers file-based storage by
the protocols NFS, CIFS, FTP, TFTP and HTTP and block-based storage by the FC,
FcoE and iSCSI protocols; we are interested in the block-based storage offerings and
more particulary via the use of iSCSI.

The Internet Small Computer System Interface (iSCSI) protocol is an IP based protocol
used to let clients (initiators) communicate with I/O storage devices (targets) by sending
SCSI packets over TCP/IP (Huffered 2003). OpenStack offers a NetApp iSCSI direct
driver meaning the iSCSI connection goes directly to the virtual machine, as shown in
Figure 3.

 Figure 3. High-level Overview of OpenStack and NetApp iSCSI

When in use with OpenStack, NetApp receives iSCSI packets from the virtual machine
which is configured to use the NetApp service via Cinder. The OpenStack virtual
machines can then mount and make use of the remote volume, or Logical Unit Number
(LUN); an addressable logical SCSI device that is physically connected to the SCSI
target. The NetApp iSCSI direct driver is the driver we are interested in testing.

2.2.2 NetApp at CERN

The use of NetApp in CERN is highly documented mainly in conjunction with the use of
Oracle Databases hence it appears many NetApp clusters are presently being used within
CERN (NetApp 2013) (Daniel 2010). The specifications of the NetApp cluster we used
was:

• FAS2040 Storage Systems
• Data ONTAP 8
• 52 Disks

Physical Host

Nova

VM

VM

NetApp Filer

iSCSI
Target

Cinder

NetApp
Driver

Block Volumes

iSCSI

11 | P a g e

2.3 Ceph
Ceph is a massively scalable, open source, software-defined storage system that runs on
commodity hardware (Ceph 2013).

2.3.1 Overview
Ceph delivers three types of storage: object, block and filesystem.

These storage types are offered from the Ceph Storage Cluster known as the Reliable,
Autonomic, Distributed Object Store (RADOS). RADOS is self-managing, self-healing,
has no single points of failure and can be massively scalable. The object store is accessed
via the RADOS Gateway (RGW) and block storage can be provisioned through the
RADOS Block Device (RBD) service, both of which use librados to access RADOS.
These components and their interactions are shown in the architecture diagram below.

 Figure 4. Ceph Architecture (Ceph 2013)

To provide high reliability and performance, the RADOS service consists of a number of
monitoring node daemons (MONs) and object storage daemons (OSDs). The purpose of
MONs are to maintain a master copy of the cluster map containing the cluster
membership, configuration and state; many of these daemons may run where at least 3 is
recommended. OSDs serve and store objects to and from clients; again many of these
daemons may run concurrently upon a Ceph cluster to improve performance.

12 | P a g e

When in use with OpenStack Cinder,
Ceph uses RBD, and more specifically
the librbd library, to interact with
RADOS and subsequent OSDs, as
shown in Figure 5. This also shows
libvirt, a tool to interact and manage
virtualization on Linux. This
configures the OpenStack
QEMU/KVM virtual machines to use
librbd, in turn allowing RBD block
devices to be attached and I/O
operations to be performed on the
remote cluster. Not only can Ceph be
integrated with Cinder to make use of
block devices, it can be integrated with OpenStack’s image service Glance to provide a
backend for virtual machine images on RBD volumes.

2.3.2 RBD Striping

Regardless of whether Cinder or Glance is integrated with Ceph, to increase I/O
performance, data stored upon these RBD volumes is striped across multiple Ceph
objects and stored by RADOS meaning a single disk’s performance does not become the
bottleneck when performing I/O operations. Ceph uses a modified RAID 0 data
distribution where data is stored upon one object up to a fixed size then the next object is
used to store the data, and so on. Two important variables exist to control the how data
striping operates:

• stripe_unit: the size of a single stripe unit.

• stripe_count: the number of objects to distribute segments of size ‘stripe unit’
before looping back to the first object.

Upon creation of a RBD volume via OpenStack, Ceph provides default values for these
variables and hence data upon these volumes are always striped in the same way
regardless of whether the application/data running upon the volume would best be suited
to another striping setup to increase its performance. This is one of the problems we aim
to solve.

2.3.3 RBD Caching

By default, OpenStack does not perform any caching however Ceph can take advantage
of caching via librbd. As librbd cannot take advantage of the Linux page cache, it
provides its own in-memory implementation of caching. This is however disabled by
default and Ceph does this for data safety. A host failure or power disruption could
corrupt data if QEMU exits uncleanly or data may even be lost.

OSDs MONs
RADOS Protocol

librbd
QEMU/KVM

libvirt
configures

 Figure 5. libvirt and librbd

13 | P a g e

RBD caching can be enabled in two ways:

1. Modify the /etc/ceph/ceph.conf file – Ceph’s configuration file – to include:

rbd cache = true // for write-back caching (1)
rbd cache max dirty = 0 // for write-through caching (2)

If (1) is only included, write-back caching is performed by default; this is
recommended by Ceph if caching is enabled. We can select write-though by
including (2) meaning writes only return when the data is present on all replicas but
reads can come from the cache. Other caching methods (i.e a mix of both strategies)
can be found at: http://ceph.com/docs/next/rbd/rbd-config-ref/#rbd-cache-config-
settings

2. Modify the /etc/nova/nova.conf file – Nova’s configuration file – to include:

disk_cachemodes=”network=writeback”

This simply enables Ceph caching and sets the cache policy to writeback; writethough
could also be entered here. It does this by entering the selected policy into an XML
file which virsh – the command line interface to libvirt - uses to attach the previously
created RBD volume to the instance. For example, this XML file would look
something like:

<disk type='network' device='disk'>
 <driver name="qemu" type="raw" cache="writeback"/>
 <source protocol="rbd" name="volume_pool/volume_name">
 <host name='XXX.XXX.XXX.XXX' port='6789'/>
 </source>
 <target dev="vdb" bus="virtio"/>
 <auth username='volumes'>
 <secret type='ceph' uuid='232g33rf32ed12ed2ed2'/>
 </auth>
</disk>

This file specifies that the disk is accessible over the network and is accessed using
the RBD protocol. The remote path and volume name are specified as well as the
server connect to and the relevant authentication. The disk is then attached to the
target device to be exposed to the guest OS.

The user-specifed caching policy is entered from the nova.conf file and hence
writeback caching will be employed on the Ceph client. If caching was only enabled
via ceph.conf or not enabled at all, the cache variable within the XML would be set to
‘none’, i.e cache=”none”.

2.3.4 Ceph at CERN
CERN actively make use of their own Ceph cluster. At the time of writing, CERN was
currently upgrading their Ceph cuttlefish ‘Andy’ cluster to ‘Beesly’ which uses Ceph
dumpling; all our work and experiments took place on the ‘Andy’ cluster. This cluster
had the following specifications:

14 | P a g e

• 47 OSD servers, each with:
o 24 x 3TB Hitachi CoolSpin drives (5900rpms)
o 64 GB RAM
o 2 x Intel(R) Xeon(R) CPU E5-2650 (16 cores in total)
o 10Gbit ethernet NIC

• 3 MON servers where each is an OpenStack virtual machine with 2 cores with
4GB RAM.

15 | P a g e

3 Integrating OpenStack Cinder with NetApp and Ceph

We now discuss how both NetApp and Ceph can be integrated with OpenStack Cinder.
OpenStack Cinder uses iSCSI that employs the use of the Logical Volume Manager
(LVM), which has the purpose of virtualizing and managing disks, to expose volumes to
virtual machine instances. OpenStack Cinder uses a driver to create volumes of a specific
type and by default uses the LVM iSCSI driver; this can be explicitly set in the
/etc/cinder/cinder.conf file as:

volume_driver=cinder.volume.drivers.lvm.LVMISCSIDriver

If one wishes to create a volume of a different type, the volume_driver variable requires
modification as well as the likely addition of other variables however this is dependent on
the driver. Note that the Cinder integration with NetApp and Ceph as well as the errors
and solutions faced can be found in much more detail than below in our OpenStack
documentation.

3.1 NetApp
Integrating NetApp with OpenStack Cinder is a relatively easy process. After obtaining a
username and password to access the NetApp cluster, we need to modify the
/etc/cinder/cinder.conf file to include the necessary directives:

volume_driver=cinder.volume.drivers.netapp.iscsi.NetAppDirect7mode
ISCSIDriver
netapp_server_hostname=lxfssmXXXX.cern.ch
netapp_server_port=8088
netapp_login=username
netapp_password=password

This configuration specifies that the NetApp iSCSI direct driver should be used and the
iSCSI target is located on the specified host via port 8088. We also enter the username
and password to allow OpenStack access to the NetApp service. Many other directives
are available however they are not mandatory to use the CERN NetApp services.

In theory, one should now be able to create NetApp volumes via the Horizon interface
however in our experience things were much more difficult due to permission problems.
These originated from Cinder not having the required permission to successfully issue
API calls on the NetApp filer. The required API calls to gain access to were:

login-*,api-clone-start,api-clone-list-status,api-nfs-exportfs-
storage-path,api-lun-*,api-volume-options-list-*,api-volume-list-
,api-igroup-,api-iscsi-*,api-storage-shelf-list-info,cli-version

After the correction of a few minor errors, OpenStack was then able to create, attach,
format and mount NetApp volumes.

16 | P a g e

3.2 Ceph
To integrate Ceph successfully with OpenStack Cinder, one must first obtain a
configuration file (ceph.conf) and a keyring (ceph.client.pool_name.keyring) to access a
particular RADOS pool. These are segregated areas for storing data which offer
replication, restricted access etc. We had access to the following pools:

• volumes: where we store the RBD block volumes
• images: where we store the virtual machine images

We discuss how to integrate both OpenStack volumes (Cinder) and images (Glance) with
Ceph below but first we discuss the necessary prerequisites.

3.2.1 Prerequisites

The necessary prerequisites are discussed in our OpenStack documentation however we
do highlight one important requirement here. At the time of writing, the Red Hat version
of QEMU did not support the attachment of RBD volumes and when doing so resulted in
the error:

“internal error unable to execute QEMU command '__com.redhat_drive_add': Device
'drive-virtio-disk1' could not be initialized”

To avoid this, QEMU needs to be replaced with the QEMU RPMs available from Ceph;
(http://ceph.com/packages/qemu-kvm/centos/x86_64/).

3.2.2 Block Storage

Similar to the integration of NetApp, Ceph requires the RBD driver to be specified as
well as directives relating to authentication. Again these must be placed within the
/etc/cinder/cinder.conf file and are:

volume_driver=cinder.volume.drivers.rbd.RBDDriver
rbd_pool=volumes
rbd_user=volumes
rbd_secret_uuid=the_secret_key
glance_api_version=2

This configuration shows that the RBD driver should be used and the remote volumes are
accessible within the pool ‘volumes’ and are accessible only by user ‘volumes’. The
generated secret key is tied to our Ceph keyring enabling virsh to attach the remote
volume to our instance. Note that the remote server hostname is not present in this
configuration file however it must be specified within /etc/ceph/ceph.conf. For example:

[global]
 mon host = ceph01.cern.ch

After correcting a few errors as discussed in our OpenStack documentation, we were able
create, attach, format and mount Ceph volumes.

17 | P a g e

3.2.3 Image Storage

Ceph not only provides block storage but allows RBD volumes to become a backend for
storing Glance images. To configure Glance to use Ceph, we must modify/edit
/etc/glance/glance-api.conf:

default_store=rbd
rbd_store_user=images
rbd_store_pool=images
rbd_store_ceph_conf=/etc/ceph/ceph.conf

The first directive is present within glance-api.conf and must be modified from its initial
value ‘file’ to ‘rbd’. In similar fashion of configuring Cinder, we must include the pool
name and user which has access to this pool. Finally, the Ceph configuration file must be
listed to ensure the Glance service knows how to access the Ceph cluster.

After creating a Glance image, we should now see that the image now resides on Ceph
within the correct pool as opposed to on the OpenStack controller node.

3.3 Cinder Multi-backend
So far we have only described how a single driver (e.g NetApp or Ceph) can be used to
create and attach volumes from a single source. OpenStack Cinder allows multiple
drivers to be used concurrently without the need to modify the Cinder configuration file
and restart the service each time a user wishes to create a volume from a different source.
To do this we have to set the following directives in /etc/ceph/ceph.conf:

enabled_backends=netapp-driver,rbd-driver

[netapp-driver]
#Normal NetApp directives
…
volume_backend_name=netapp_backend

[rbd-driver]
#Normal RBD directives
…
volume_backend_name=rbd_backend

First we define enabled_backends to include the names of the configuration groups and
within these groups we specify the directives for the respective drivers, for example,
those outlined above for NetApp and Ceph. We must also give the enabled backends a
name. For each driver listed, the users have to manually create a Cinder volume type and
link this type to the backend name meaning a user can select the driver they wish to use
via the Horizon interface. This looks as follows:

 Figure 6. Volume Type Selection via Horizon

18 | P a g e

The process of manually creating Cinder volume types for each driver and linking this to
the backend name is one that can be performed automatically by OpenStack with some
additions. We have modified the OpenStack source (cinder/manager.py) to include this
functionality.

types_reset = False

def create_volume_type(self, context, volume_driver):
volume_types.create(context,volume_driver.lower(),extra_specs={})

def destroy_volume_type(self, context):
 vts = volume_types.get_all_types(context)

for x in vts:
 volume_types.destroy(context,vts[x]["id"])

def init_volume_types(self,context, volume_driver):
type_present = False

if VolumeManager.types_reset == False:
 self.destroy_volume_type(context)
 VolumeManager.types_reset = True

vts = volume_types.get_all_types(context)

 for x in vts:
 if volume_driver.lower() in vts[x]["name"]:
 type_present = True
if type_present == False:
 self.create_volume_type(context, volume_driver)

When the first driver is loaded, we call init_volume_types which then destoys all
previous volume types by calling the destroy function from the OpenStack
volume_types.py class. We then create the volume type based on the volume driver
name and link it to a self created backend name. When subsequent drivers are loaded, we
ensure previous volume types remain and again create the volume type based on the
drivers name. This removes the requirement of the user manually creating volume types
for each of their drivers.

19 | P a g e

4 The Performance of NetApp and Ceph

We now describe the performance achieved when running a number of benchmarks upon
the NetApp and Ceph clusters.

4.1 Benchmark Setup
To benchmark a cluster, we instantiated three virtual machines and attached and mounted
a disk of a specific size from the respective cluster to each virtual machine. The three
disk sizes were 100GB, 200GB and 400GB and were each mounted to the virtual
machines A, B and C respectively; 400GB was the largest disk size we could create using
the NetApp cluster. Our experimental setup is shown below.

The purpose of this configuration was to:

1. determine the performance difference
between NetApp and Ceph in their
respective setups.

2. determine if any performance differences
exist dependent on the size of the disk.

3. determine if there is any performance
degradation if other disks present within the
cluster are being heavily used; we performed
this by running the benchmarks on each disk
at the same time.

These experiments were first performed on the NetApp cluster and soon after, upon the
Ceph cluster, by running benchmarks upon the attached formatted disk. Each benchmark
was executed five times and the results were averaged. The results shown display the
results from the best performing disk from either the 100GB, 200GB and 400GB disks.

4.2 Benchmarks
We used three benchmarks to test the performance of NetApp and Ceph to get a better
understanding of the performance of each cluster. The benchmarks used are described in
the following subsections.

4.2.1 hdparm

hdparm is a disk performance benchmarking and configuration tool. We used hdparm to
test the speed of buffered, cached and reads (Aspinwall 2009).

Buffered reads use the file system buffer cache hence hdparm measures the speed of
reading through this cache to the disk without caching any data previously. Cached reads
are performed directly from the cache hence hdparm measures the speed when reading
from the cache only. Finally hdparm also measures the speed of direct reads where the

 Figure 7. Benchmark Setup

20 | P a g e

file system buffer cache is bypassed allowing applications to perform asynchrounous
overlapping I/O operations.

4.2.2 FIO

FIO: the Flexible I/O Tester is a workload generator and benchmarking tool (FIO 2013).
We use FIO to measure aggregate read and write bandwidth. To use FIO, one must create
a job description file which describes the workloads to be executed. As CERN is quoted
to perform 20% writes and 80% reads, we created multiple job description files that
mimic the same level of I/O operations for both sequential and random read and writes.
An example of the latter is displayed below:

[read-write]
rw=randrw
size=16g
directory=/root/disk/fio/CERN/rrw
blocksize=256k
numjobs=25
nrfiles=1
filesize=320m
runtime=10m

[data02]
rw=randread
size=16g
directory=/root/disk/fio/CERN/rrw/d2
blocksize=256k
numjobs=25
nrfiles=1
filesize=320m
runtime=10m

[data03]
rw=randread
size=16g
directory=/root/disk/fio/CERN/rrw/d3
blocksize=256k
numjobs=25
nrfiles=1
filesize=320m
runtime=10m

[data04]
rw=randread
size=16g
directory=/root/disk/fio/CERN/rrw/d4
blocksize=256k
numjobs=25
nrfiles=1
filesize=320m
runtime=10m

This file specifies that four processes execute: one to perform random read and write
operations and the remaining three to randomly read data. In this configuration, direct I/O
is disabled however can be added by specifying direct=1. Each process has a buffer
cache of 256KB and creates 25 instances of itself to operate over its own 320MB file
located within the directory listed. The read and write processes halt once 16GB of data
has been read and writen. If these operations have not completed within 10 minutes, the

21 | P a g e

processes terminate and the results displayed. These results are summarized at the end of
each benchmarking run; an example is shown below.

Run status group 0 (all jobs):
 READ: io=28219MB, aggrb=110442KB/s, minb=660KB/s, maxb=2457KB/s,
mint=133343msec, maxt=261638msec
 WRITE: io=3781.3MB, aggrb=14799KB/s, minb=591KB/s, maxb=679KB/s,
mint=227813msec, maxt=261638msec

Disk stats (read/write):
 vdb: ios=120303/18169, merge=0/947355, ticks=10116683/53279160,
in_queue=61857457, util=100.00%

The result we are interested in the aggregate bandwidth for each process (underlined), i.e
the combined bandwidth for all process instances for read and write operations.

4.2.3 dd

dd is the Linux function used to covert and copy files (GNU 2013). This function
however displays the read and write speeds when writing to and reading from files. We
used dd to read and write from 1GB and 10GB files and recorded the speeds achieved.
An example of the former case is shown below.

dd if=/dev/zero of=1GBFile bs=1073741824 count=1 &> write.txt (A)
dd of=/dev/zero if=1GBFile bs=1073741824 count=1 &> read.txt (B)

We see that to create a file (A), we take the input from /dev/zero with a block size of
1GB, output the contents to a file named 1GBFile and capture the function’s output
within write.txt; this process is similar of reads as shown in (B). In this configuration,
direct I/O is disabled however is can be enabled by specifying oflag=direct. To test the
affect of virtual machine caching, each execution was run when the cache was enabled
and then disabled (or emptied); the latter can be performed by executing:

sync; echo 3 > /proc/sys/vm/drop_caches

4.3 Benchmark Results
We now show the results obtained from running the above benchmarks on NetApp and
Ceph. Note that the NetApp and Ceph clusters have different configurations, varying
numbers and types of hard disks as well as different network connections; 1Gbit and
10Gbit for the NetApp and Ceph clusters respectively. Hence our aim is not to determine
which cluster is best overall but to test the cluster’s achievable performance in their
respective configurations.

4.3.1 NetApp versus Ceph

Firstly we see the results from the hdparm benchmark in Figure 8. The speed of cached
reads are similar for both NetApp and Ceph where NetApp performs only slightly better
at approximately 6GB/s. However, Ceph outperforms Netapp for both buffered and direct
reads by being approximately two and eight times respectively.

22 | P a g e

Similar to hdparm, FIO (Figure 9) also shows that Ceph outperforms NetApp both when
Ceph caching is disabled and enabled; by default Ceph caching is disabled. Firstly, taking
the scenario when Ceph caching is disabled, the speed of sequential reads are similar to
the buffered read performance of hdparm; the type of reads hdparms uses. Furthermore,
random reads as well as random and sequential writes are also faster using Ceph but with
less of a difference between the two.

Secondly, when Ceph writeback caching is enabled upon the host, we see that the
performance gap between NetApp and Ceph widens as well as the perforance gap
between the non-cached version. For random and sequential reads, Ceph can be
approximately three times as faster than NetApp when caching is enabled; similarly,
Ceph’s write performance can be four times faster. In our experience, little performance
gain is achieved using writethrough caching with Ceph.

Figure 10. dd Benchmark Results

Finally, running the dd benchmark in the same way as hdparm and FIO shows some
different results. We see from Figure 9 that NetApp is faster at writing to both a 1GB and
10GB file however Ceph is typically faster at reading these files. We also see the

 Figure 8. hdparm Benchmark Results

 Figure 9. FIO Benchmark Results

23 | P a g e

performance differences when virtual machine caching is either enabled or disabled
however it is difficult to provide an overall comparison when either method is employed.
Despite this, we can see that the use of the virtual machine cache can be beneficial for
both NetApp and Ceph when the speed of reading a 1GB file is approximately 2.5 GB/s.

As all benchmarks were run multiple times on the three different sized disks, we found
that the performance of each disk usually remains equal despite the size being different
for both NetApp and Ceph; of course there were a few exceptions where some disk’s
performance is much larger or less than another however no correlation could be found
between disk size and achievable performance.

4.3.2 Miscellaneous: Direct and Concurrent Benchmarks

By default, the above benchmarks were performed with direct I/O disabled and each
benchmark was performed independently, i.e. only upon one disk at a time. We also
performed the same benchmarks with direct I/O. It was found that the random read and
write performance increased for both NetApp and Ceph however the sequential read and
write performance only slightly increased with Ceph and remained unchanged with
NetApp.

Executing the same benchmark on all three mounted disks concurrently did however
decrease NetApp’s achievable performance by approximately 50% for both the FIO and
dd benchmarks. The performance of FIO when executing concurrently on our three Ceph
volumes remained unchanged however a slight decrease in performance was observed
when running the dd benchmark. This can be explained by the different configurations of
the NetApp and Ceph clusters and in particular the network speeds available to each.

24 | P a g e

5 Ceph: Adding Striping and Caching to OpenStack
Using OpenStack with Ceph by default does not allow users to specify the stripe_count
and stripe_unit parameters when volumes are created; defaults values are always used for
all volumes. Similarly, Ceph caching is disabled by default however when caching is
enabled via the ceph.conf file, this caching method is used for all RBD volumes and as
such, users are not able to specify the caching method they wish to use per volume.

We now describe how we have modified OpenStack to allow these features to be
enabled.

5.1 Adding RBD Striping
To obtain the stripe_count and stripe_unit parameters from the user, we first have to add
the respective text fields to the Horizon interface when a user creates a volume; we do
this by modifying horizon/openstack_dashboards/dashboards/project/volumes/forms.py
The stripe fields should however only appear when the RBD driver is in use. We do this
by creating a volume type for each of the drivers enabled (see Section 3.3) and when the
volume type associated with the RBD driver is selected (in our case this is
‘cinder.volume.drivers.rbd.rbddriver’) the stripe_count and stripe_unit text fields
dynamically appear. This is depicted in Figure 11.

Figure 11. The modified ‘Create Volume’ submission form including stripe parameters

25 | P a g e

This dynamic appearance is achieved by using OpenStack’s ‘switchable’ and ‘switched’
fields. By marking a field as switchable, we specify that this is a field which is used to
instruct other fields (i.e the switched fields) to display or not dependent on the option
selected. In our case, the volume type field is switchable and the stripe fields are of type
switched:

type = forms.ChoiceField(label=_("Type"), widget=forms.Select(
 attrs={'class': 'switchable',
 'data-slug': 'type'}),
 required=False)

stripe_count = forms.IntegerField(min_value=1, label=_("Stripe Count"),
 widget=forms.TextInput(attrs={

 'class': 'switched',
 'data-switch-on': 'type',
 'data-type-cinder.volume.drivers.rbd.rbddriver':

 _('Stripe Count')}), required=False)

stripe_unit = forms.IntegerField(min_value=1, label=_("Stripe Unit"),
 widget=forms.TextInput(attrs={
 'class': 'switched',
 'data-switch-on': 'type',
 'data-type-cinder.volume.drivers.Rbd.rbddriver':
 _('Stripe Unit')}), required=False)

The stripe fields will then appear when the string cinder.volume.drivers.rbd.rbddriver is
selected via the type field. If stripe values are entered, the values subsequently entered are
then sanitized to ensure they are valid according to the size of the disk and then are
passed as parameters to many method calls which store these values in the database and
create the volume. We perform these checks by using the following snippet of code:

try:
stripe_count = int(data['stripe_count'])
stripe_unit = int(data['stripe_unit'])

if ((int(data['size']) * 1073741824) %(stripe_count * stripe_unit) != 0):
 error_message = _('Please Enter Valid Striping Parameters!')
 raise ValidationError(error_message)

except Exception:
stripe_count = 0
stripe_unit = 0

volume = cinder.volume_create(request,
 data['size'],
 data['name'],
 data['description'],
 data['type'],
 snapshot_id=snapshot_id,
 image_id=image_id,
 metadata=metadata,
 stripe_count=stripe_count,
 stripe_unit=stripe_unit)

First we check if values are entered or not by using try except. Leaving either of these
fields empty will cause an exception to occur and default values to be set. If values are
present, they are check to ensure that the stripe parameters are correct according to the
disk size, if not an error message is displayed to the user. We then pass these values to the

26 | P a g e

cinder.volume_create method which then passes these values to subsequent method calls
that are used to create volumes. The following files containing methods we have
modified are:

• horizon/openstack_dashboard/api/cinder.py
• python-cinderclient/cinderclient/v1/volumes.py
• python-cinderclient/cinderclient/v2/volumes.py
• cinder/api/v1/volumes.py
• cinder/api/v2/volumes.py
• cinder/volume/api.py
• cinder/volume/flows/create_volume/__init__.py
• cinder/volume/drivers/rbd.py

Apart from the latter RBD driver, the modifications to the other files are small hence they
are not described here. We show the changes we have made to the RBD driver to allow
the stripe parameters to be specified during volume creation below:

rbd_stripe_count = int(volume['stripe_count'])
rbd_stripe_unit = int(volume['stripe_unit'])

if rbd_stripe_count != 1:
 image_format = 2
else:
 image_format = 1

args = ['rbd', 'create',
 '--pool', self.configuration.rbd_pool,
 '--size', size,
 '--stripe_count', rbd_stripe_count,
 '--stripe_unit', rbd_stripe_unit,
 '--image-format', image_format,
 volume['name']]
self._try_execute(*args)

We first retrieve the stripe parameter values from the database and then perform a simple
check to determine if the values are default or not. Currently Ceph has two formats of
images which can be used to create a volume. The second image format is the only
format that allows non-default striping values to be used during creation. We therefore set
the image format number dependent on whether default stripe parameter values were
entered or not. Finally, we append the ‘—stripe_count’, ‘—stripe_unit’ and ‘—image-
format’ parameters to the command that is executed to create the volume.

One can confirm that the volume has been properly created using the specified stripe
parameters by executing the rbd info volume_name on the command line.

We have submitted these modifications upstream to the OpenStack project and hopefully
will be merged into a future release of OpenStack. These modifications can be found at:

• https://review.openstack.org/#/c/47469/
• https://review.openstack.org/#/c/47471/
• https://review.openstack.org/#/c/47473/

27 | P a g e

5.2 Adding RBD Caching
In order to allow different per-volume caching policies to be selected, we first have to
make available the caching policies to the user via the Horizon interface when a user
wishes to attach an existing volume to an instance. This is shown in Figure 12.

Figure 12. The modified ‘Attach Volume’ form including per-volume caching policies

We add the selection field similar to the way the ‘type’ field is added in the case of
introducing striping parameters.

cache_policy = forms.ChoiceField(label=_("Caching Method"), required=False)

Afterwards the the cache policies are then populated; we only offer two types of caching:
writeback and writethrough. The selected policy is then passed through many method
calls and is eventually entered dynamically into the XML file created (see Section 2.3.3)
to allow libvirt to attach the volume to the instance. This XML is created within
nova/nova/virt/libvirt/volume.py and allows the user defined preference to be set:

conf.device_type = disk_info['type']
conf.driver_format = "raw"
conf.driver_cache = disk_info['cache_policy']
conf.target_dev = disk_info['dev']
conf.target_bus = disk_info['bus']
conf.serial = connection_info.get('serial')

Currently, we have an ‘unstable’ version of this feature available and requires more
implementation and stability before being submitted to OpenStack for integration in
future releases.

28 | P a g e

6 Conclusions

In this report, we have outlined the progress made during the project ‘Implementation of
OpenStack Cinder and Integration with NetApp and Ceph.’ First we showed the
infrastructure made available to this project and how OpenStack was deployed upon these
servers; a process that was documented to allow future employees and summer students
to find it easier to install the open source platform.

The presence of NetApp and Ceph clusters within CERN gave us the opportunity to test
their ease of integration with OpenStack. We found that in theory, integration is easy and
can be achieved by entering a small number of lines within the Cinder configuration file,
however in reality many problems existed, in particular with NetApp.

The performance of both these storage clusters were tested in their respective
configurations and because of this, a direct comparsion and ultimate conclusion outlining
which is best cannot be offered. However our results did show that Ceph is typically
faster at reading data however it is difficult to include which is best for writing files. The
appropriate cluster for use at CERN would not only be which offers the best performance
but also provides the required features (scalability, relability etc) dependent on the
applications using block-storage volumes.

To potentially increase the performance of Ceph storage volumes, we introduced per-
volume data striping when creating volumes. Currently, data striping values are set by
default and cannot be changed when Ceph is integrated with OpenStack. By allowing
user-specified stripe_count and stripe_unit parameters to be set, data can now be striped
optimally dependent on the application or data present on the RBD volume. We outlined
how this feature was implemented and we hope that it’s submission upstream to
OpenStack will allow this feature to be available to all in a future release.

Ceph caching – a feature which is disabled by default – is also enabled to increase
performance. Dependent on the application/data present on the volume, the user can
select either the writeback or writethrough caching polices for each of the volumes to be
attached to an instance. At the time of leaving CERN, this implementation was still in
progress and hence becomes future work. Despite this, we did however show that using
writeback caching can potentially increase read and write performance by up to 3 or 4
times and writethrough caching gives only a slight performance increase.

7 Acknowledgements
Finally, I would like to thank my supervisor Thomas Oulevey for all the support received
during the course of the program. Also thank you to the OpenStack group the Openlab
administration team (in particular Jasime, Sebastian and Kristina) who helped
significantly during my stay, especially in the first week!

29 | P a g e

8 Bibliography
Andrade, P, et al. “Review of CERN Data Centre Infrastructure.” Journal of Physics: Conference
Series, 2012.

Aspinwall, Jim. PC Hacks: 100 Industrial-Strength Tips & Tools. O'Reilly Media, 2009.

Ceph. Ceph. 2013. http://ceph.com.

Daniel, Eric Grancher and Steve. CERN Openlab. 2010.
http://openlab.web.cern.ch/sites/openlab.web.cern.ch/files/presentations/2010OOW-08.pdf.

FIO. FIO - Freecode. 2013. http://freecode.com/projects/fio.

GNU. dd invocation - GNU Coreutils. 2013.
http://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html.

Huffered, John L. ISCSI: The Universal Storage Connection. Addison-Wesley Professional,
2003.

NetApp. NetApp Storage Helps CERN Unlock the Secrets of the Universe. 2013.
http://www.netapp.com/us/company/news/press-releases/news-rel-20120926-758337.aspx.

OpenStack. OpenStack Open Source Cloud Computing Software. 2013.
https://www.openstack.org.

Pepple, Ken. OpenStack Grizzly Architecture. 2013.
http://www.solinea.com/2013/06/15/openstack-grizzly-architecture-revisited/.

RDO, Redhat. Quickstart - RDO. 2013. http://openstack.redhat.com/Quickstart.

