Published January 1, 2019 | Version v1
Journal article Restricted

Blautia argi sp. nov., a new anaerobic bacterium isolated from dog faeces

Description

Paek, Jayoung, Shin, Yeseul, Kook, Joong-Ki, Chang, Young-Hyo (2019): Blautia argi sp. nov., a new anaerobic bacterium isolated from dog faeces. International Journal of Systematic and Evolutionary Microbiology 69 (1): 33-38, DOI: 10.1099/ijsem.0.002981, URL: http://dx.doi.org/10.1099/ijsem.0.002981

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:236FFFF4FFCE7237FFC62C602F144634
URL
http://publication.plazi.org/id/236FFFF4FFCE7237FFC62C602F144634

References

  • 1. Kostic AD, Howitt MR, Garrett WS. Exploring host-microbiota interactions in animal models and humans. Genes Dev 2013;27: 701-718.
  • 2. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al. Enterotypes of the human gut microbiome. Nature 2011;473:174- 180.
  • 3. Harmsen HJ, Raangs GC, He T, Degener JE, Welling GW. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 2002;68:2982-2990.
  • 4. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2008;58:1896-1902.
  • 5. Park SK, Kim MS, Bae JW. Blautia faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2013;63:599-603.
  • 6. Shin NR, Kang W, Tak EJ, Hyun DW, Kim PS et al. Blautia hominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2018;68:1059-1064.
  • 7. Togo AH, Diop A, Bittar F, Maraninchi M, Valero R et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie van Leeuwenhoek 2018:1-22.
  • 8. Jung MY, Kim JS, Paek WK, Styrak I, Park IS et al. Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus. Int J Syst Evol Microbiol 2012;62:2347-2355.
  • 9. Chang YH, Jung MY, Park IS, Oh HM. Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 2008;58:2316-2320.
  • 10. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240-245.
  • 11. Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA et al. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res 1980;8:2275-2294.
  • 12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-425.
  • 13. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5. Distributed by The Author. Department of Genome Sciences, SEA: University of Washington; 1993.
  • 14. Jeon YS, Chung H, Park S, Hur I, Lee JH et al. jPHYDIT: a JAVAbased integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005;21:3171-3173.
  • 15. Kimura M. The Neutral Theory of Molecular Evolution. Cambridge University, NY: Cambridge; 1983.
  • 16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368-376.
  • 17. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1-32.
  • 18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783-791.
  • 19. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125-128.
  • 20. Cho E, Park SN, Shin Y, Lim YK, Paek J et al. Peptoniphilus mikwangii sp. nov., isolated from a clinical specimen of human origin. Curr Microbiol 2015;70:260-266.
  • 21. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563-569.
  • 22. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614-6624.
  • 23. Sasser M. Identification of Bacteria by Gas Chromatog-Raphy of Cellular Fatty Acids, MIDI Technical Note 101. MIDI Inc: Newark, DE; 1990.
  • 24. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128-130.
  • 25. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int J Syst Bacteriol 1989;39: 159-167.
  • 26. Stackebrandt E. Family I Erysipelotichaceae. In: de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. . (editors). Bergey' s Manual of Systematic Bacteriology. New York: Springer; 2009. pp. 1299.
  • 27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81-91.
  • 28. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346-351.
  • 29. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44:812-826.
  • 30. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152.
  • 31. Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635-645.