Published March 15, 2021 | Version v1
Journal article Open

Methylobacterium ajmalii sp. nov., Isolated From the International Space Station

  • 1. Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
  • 2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
  • 3. Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
  • 4. WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States

Description

Bijlani, Swati, Singh, Nitin K., Eedara, V. V. Ramprasad, Podile, Appa Rao, Mason, Christopher E., Wang, Clay C. C., Venkateswaran, Kasthuri (2021): Methylobacterium ajmalii sp. nov., Isolated From the International Space Station. Frontiers in Microbiology 12, No. 639396: 1-14, DOI: 10.3389/fmicb.2021.639396

Files

source.pdf

Files (1.3 MB)

Name Size Download all
md5:77d9b5688723afba3ce6f3b43611574d
1.3 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFD9B5688723FFBAFFE6FFB43611574D
URL
http://publication.plazi.org/id/FFD9B5688723FFBAFFE6FFB43611574D

References

  • Amin, S. A., Hmelo, L. R., van Tol, H. M., Durham,B. P., Carlson, L. T., Heal, K.R., et al. (2015). Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98-101. doi: 10.1038/nature14488
  • Auch, A. F., von Jan, M., Klenk, H.-P., and Goker, M. (2010). Digital DNA-DNA hybridizationformicrobial species delineation by meansof genome-to-genome sequence comparison. Standards Genom. Sci. 2, 117-134. doi: 10.4056/sigs. 531120
  • Aunins, T. R., Erickson, K. E., Prasad, N., Levy, S. E., Jones, A., Shrestha, S., et al. (2018). Spaceflight modifies Escherichia coli gene expression in response to antibiotic exposure and reveals role of oxidative stress response. Front. Microbiol. 9:310. doi: 10.3389/fmicb.2018.00310
  • Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., etal. (2008).The RAST server:rapid annotationsusing subsystems technology.BMC Genom. 9:75. doi: 10.1186/1471-2164-9-75
  • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477. doi: 10.1089/cmb.2012. 0021
  • Brettin, T., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Olsen, G. J., etal. (2015). RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5:8365.
  • Chaudhry, V., Baindara, P., Pal, V. K., Chawla, N., Patil, P. B., and Korpole, S. (2016). Methylobacterium indicum sp. nov., a facultative methylotrophic bacteriumisolated fromrice seed.Syst.Appl.Microbiol.39, 25-32. doi:10.1016/ j.syapm.2015.12.006
  • Checinska, A., Probst, A. J., Vaishampayan, P., White, J. R., Kumar, D., Stepanov, V. G., et al. (2015). Microbiomes of the dust particles collected from the international space station and spacecraft assembly facilities. Microbiome 3:50.
  • Checinska Sielaff, A., Urbaniak, C., Mohan, G. B. M., Stepanov, V. G., Tran, Q., Wood, J. M., et al. (2019). Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7:50.
  • Gallego, V., Garcia, M. T., and Ventosa, A. (2005a). Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 55, 281-287. doi: 10.1099/ijs.0. 63319-0
  • Gallego, V., Garcia, M.T., and Ventosa, A.(2005b). Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. Int. J. Syst. Evol. Microbiol. 55, 1429-1433. doi: 10.1099/ijs.0.63597-0
  • Green, P. N., and Ardley, J. K. (2018). Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus. methylorubrum gen. nov. Int. J. Syst. Evol. Microbiol. 68, 2727-2748. doi: 10.1099/ijsem.0.002856
  • Green, P. N., and Bousfield, I. J.(1982).Ataxonomic study of some Gram-negative facultatively methylotrophic bacteria.Microbiology 128, 623-638. doi: 10.1099/ 00221287-128-3-623
  • Grossi, C. E. M., Fantino, E., Serral, F., Zawoznik, M. S., Fernandez, Do Porto, D. A., et al. (2020). Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Front. Plant Sci. 11:71. doi: 10.3389/fpls.2020.00071
  • Haft, D. H., DiCuccio, M., Badretdin, A., Brover, V., Chetvernin, V., O'Neill, K., etal.(2018).RefSeq:anupdate onprokaryoticgenome annotation andcuration. Nucleic Acids Res. 46, D851-D860.
  • Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T., and Aluru, S. (2018).High throughput ANIanalysisof 90Kprokaryotic genomes revealsclear species boundaries. Nat. Commun. 9:5114.
  • Jones, D. M. (1981). Manual of methods for general bacteriology. J. Clin. Pathol. 34:1069. doi: 10.1136/jcp.34.9.1069-c
  • Jurtshuk, P. Jr., and McQuitty, D. N. (1976). Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria. Appl. Environ. Microbiol. 31, 668-679. doi: 10.1128/aem.31.5.668-679.1976
  • Kang, Y. S., Kim, J., Shin, H. D., Nam, Y. D., Bae, J. W., Jeon, C. O., etal. (2007). Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis.Int. J.Syst.Evol.Microbiol.57, 2849-2853. doi:10.1099/ijs.0.65262-0
  • Kelly, D. P., McDonald, I. R., and Wood, A. P. (2014). "The family methylobacteriaceae," in The Prokaryotes- Alphaproteobacteria and Betaproteobacteria, eds E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson, (Berlin: Springer), 313-340. doi: 10.1007/978-3-642-30197-1_256
  • Kim, J., Chhetri, G., Kim, I., Kim, H., Kim, M. K., and Seo, T. (2019). Methylobacterium terrae sp.nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J. Microbiol. 57, 959-966. doi: 10.1007/s12275-019- 9007-9
  • Koenig, R. L., Morris, R. O., and Polacco, J. C. (2002). tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 184, 1832-1842. doi: 10.1128/jb.184.7.1832-1842.2002
  • Krug, L., Morauf, C., Donat, C., Muller, H., Cernava, T., and Berg, G. (2020). Plant growth-promoting methylobacteria selectively increase the biomass of biotechnologically relevant microalgae. Front. Microbiol. 11:427. doi: 10.3389/ fmicb.2020.00427
  • Kumar, M., Tomar, R. S., Lade, H., and Paul, D. (2016). Methylotrophic bacteria in sustainable agriculture. World J. Microbiol. Biotechnol. 32:120.
  • Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. doi: 10.1093/molbev/msw054
  • Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., etal.(2004). Versatile and open softwarefor comparing large genomes.Genome Biol. 5:R12.
  • Kwak, M. J., Jeong, H., Madhaiyan, M., Lee, Y., Sa, T. M., Oh, T. K., etal. (2014). Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS One 9:e106704. doi: 10.1371/journal. pone.0106704
  • Lee, M. D. (2019). GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162-4164. doi: 10.1093/bioinformatics/btz188
  • Lee, Y., and Jeon, C. O. (2018). Methylobacterium frigidaeris sp. nov., isolated from an air conditioning system. Int. J. Syst. Evol. Microbiol. 68, 299-304. doi: 10.1099/ijsem.0.002500
  • Leigh, J. A., and Dodsworth, J. A. (2007). Nitrogen regulation in bacteria and archaea. Annu. Rev. Microbiol. 61, 349-377. doi: 10.1146/annurev.micro.61. 080706.093409
  • Madhaiyan, M., Suresh Reddy, B. V., Anandham, R., Senthilkumar, M., Poonguzhali, S., Sundaram, S. P., et al. (2006). Plant growth-promoting methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens. Curr. Microbiol. 53, 270-276. doi: 10.1007/ s00284-005-0452-9
  • Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P., and Goker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14:60. doi: 10.1186/1471-2105- 14-60
  • Orsini, S. S., Lewis, A. M., and Rice, K. C. (2017). Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression. NPJ Microgravity 3:4.
  • Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J.J., Disz, T., etal. (2014). The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206-D214.
  • Parasuraman, P., Pattnaik, S., and Busi, S. (2019). Phyllosphere Microbiome: Functional Importance in Sustainable Agriculture, New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier, 135-148.
  • Park, C., Lee, Y. S., Park, S. Y., and Park, W. (2018). Methylobacterium currus sp. nov., isolated from a car air conditioning system. Int. J.Syst.Evol. Microbiol. 68, 3621-3626. doi: 10.1099/ijsem.0.003045
  • Patel, R. K., and Jain, M. (2012). NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619. doi: 10.1371/journal. pone.0030619
  • Patt, T. E., Cole, G. C., and Hanson, R. S. (1976). Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26, 226-229. doi: 10.1099/00207713-26-2-226
  • Ramaprasad, E. V. V., Mahidhara, G., Sasikala, C., and Ramana, C. V. (2018). Rhodococcus electrodiphilus sp. nov., a marine electro active actinobacterium isolatedfromcoral reef.Int.J.Syst.Evol.Microbiol.68, 2644-2649. doi:10.1099/ ijsem.0.002895
  • Ramaprasad, E. V. V., Sasikala, C., and Ramana, C. V. (2015). Flectobacillus rhizosphaerae sp. nov., isolated from the rhizosphere soil of Oryza sativa (L.), andemended descriptionof thegenus Flectobaicillus. Int.J.Syst.Evol.Microbiol. 65, 3451-3456. doi: 10.1099/ijsem.0.000432
  • Seuylemezian, A., Singh, N. K., Vaishampayan, P., and Venkateswaran, K. (2017). Draft genome sequence of solibacillus kalamii, isolated from an air filter aboard the international space station. Genome Announc. 5:e00696-17.
  • Singh, N. K., Wood, J. M., Mhatre, S. S., and Venkateswaran, K. (2019). Metagenome to phenome approach enables isolation and genomics characterization of Kalamiella piersonii gen. nov., sp. nov. from the international space station. Appl. Microbiol. Biotechnol. 103, 4483-4497.
  • Tani, A., Ogura, Y., Hayashi, T., and Kimbara, K. (2015). Complete genome sequence of methylobacterium aquaticum strain 22a, isolated from Racomitrium japonicum moss. Genome Announc. 3:e00266-15.
  • Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., et al. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624.
  • Tindall, B., Sikorski, J., Smibert, R., and Krieg, N. (2007). "Phenotypic characterization and the principles of comparative systematics," in Methods for General and Molecular Microbiology, eds C. Reddy, T. Beveridge, J. Breznak, G. Marzluf, T. Schmidt, and L. Snyder, (Washington, DC: ASM Press), 330-393.
  • Veyisoglu, A., Camas, M., Tatar, D., Guven, K., Sazak, A., and Sahin, N. (2013). Methylobacterium tarhaniae sp. nov., isolated from arid soil. Int. J. Syst. Evol. Microbiol. 63, 2823-2828.
  • Wanner, B. L. (1993). Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51, 47-54.
  • Wanner, B. L. (1996). "Phosphorus assimilation and control of the phosphate regulon," in Escherichia coli and Salmonella: cellular and molecular biology, ed. F. C. Neidhardt, (Washington, DC: ASM press), 1357-1381.
  • Yoon, S. H., Ha, S. M., Lim, J., Kwon, S., and Chun, J. (2017). Alarge-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110, 1281-1286.