Published April 25, 2020 | Version v1
Journal article Restricted

First fossil frog from Antarctica: implications for Eocene high latitude climate conditions and Gondwanan cosmopolitanism of Australobatrachia

  • 1. Department of Palaeobiology,Swedish Museum of Natural History,P.O.Box 50007,SE-104 05,Stockholm,Sweden
  • 2. Instituto Antártico Argentino, Campus Miguelete, 25 de Mayo 1151, 3° piso B1650HMK, San Martín, Buenos Aires, Argentina
  • 3. Department of Geosciences,University of Fribourg, Chemin du musée 6, 1700,Fribourg,Switzerland

Description

Mörs, Thomas, Reguero, Marcelo, Vasilyan, Davit (2020): First fossil frog from Antarctica: implications for Eocene high latitude climate conditions and Gondwanan cosmopolitanism of Australobatrachia. Scientific Reports 10 (5051): 1-11, DOI: 10.1038/s41598-020-61973-5

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF96FF99EC5FFFF9FFEDFFBD641BFFD4
URL
http://publication.plazi.org/id/FF96FF99EC5FFFF9FFEDFFBD641BFFD4

References

  • 1. Pekar, S. F., Hucks, A., Fuller, M. & Li, S. Glacioeustatic changes in the early and middle Eocene (51-42 Ma): Shallow-water stratigraphy from ODP Leg 189 Site 1171 (South Tasman Rise) and deep-sea δ18O records. Geol. Soc. Am. Bull. 117, 1081-1093 (2005).
  • 2. Miller, K. G., Wright, J. D. & Browning, J.V.Visions of ice sheets in a greenhouse world. Mar. Geol.217, 215-231 (2005).
  • 3. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693 (2001).
  • 4. Woodburne, M. O. & Zinsmeister, W.J.Fossil land mammal from Antarctica. Science 218, 284-286 (1982).
  • 5. Woodburne, M. O. & Case, J.A. Dispersal, vicariance, and the Late Cretaceous to Early Tertiary land mammal biogeography from South America to Australia.J.Mamm.Evol. 3, 121-161 (1996).
  • 6. Gelfo, J.N., Mors, T., Lorente, M., Lopez, G.M. & Reguero, M. The oldest mammals from Antarctica, early Eocene of the La Meseta Formation, Seymour Island. Palaeontology 58, 101-110 (2015).
  • 7. Kriwet, J., Engelbrecht, A., Mors, T., Reguero, M. & Pfaff, C. Ultimate Eocene (Priabonian) Chondrichthyans (Holocephali, Elasmobranchii) of Antarctica.J.Vertebr. Paleontol. 36, e1160911 (2016).
  • 8. Schwarzhans, W.,Mors, T., Engelbrecht, A., Reguero,M. & Kriwet, J.Before the freeze: Otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei).J.Syst. Palaeontol. 15, 147-170 (2017).
  • 9. Agnolin, F.A new Calyptocephalellidae (Anura, Neobatrachia) from the Upper Cretaceous of Patagonia,Argentina,with comments on its systematic position.Stud. Geol.Salamanticensia 48, 129-178 (2012).
  • 10. Muzzopappa, P. & Baez, A. M. Systematic status of the mid-Tertiary neobatrachian frog Calyptocephalella canqueli from Patagonia (Argentina), with comments on the evolution of the genus. Ameghiniana 46, 113-125 (2009).
  • 11. Reguero, M., Goin, F., Acosta Hospitaleche, C., Dutra, T. & Marenssi, S. Late Cretaceous/Paleogene West Antarctica Terrestrial Biota and its Intercontinental Affinities 55-110 (Springer, 2013).
  • 12. Friis, E. M., Iglesias, A., Reguero, M.A. & Mors, T. Notonuphar antarctica, an extinct water lily (Nymphaeales) from the Eocene of Antarctica.Plant Syst.Evol. 181, 969-980 (2017).
  • 13. McLoughlin, S., Bomfleur, B., Mors, T.& Reguero,M.Fossil clitellate annelid cocoons and their microbiological inclusions from the Eocene of Seymour Island, Antarctica.Palaeontol.Electron. 19, 1-27 (2016).
  • 14. Goin, F. J., Case, J.A., Woodburne, M. O., Vizcaino, S. F.& Reguero, M. A. New Discoveries of "Opposum-Like" Marsupials from Antarctica (Seymour Island, Medial Eocene). J.Mamm. Evol.6, 335-365 (1999).
  • 15. Bond, M., Reguero, M.A., Vizcaino, S.F. & Marenssi, S. Cretaceous-Tertiary high-latitude palaeoenvironments: James Ross Basin, Antarctica, (ed. Francis, J.E., Pirrie, D. & Crame, J.A.) 163-176 (Geological Society,2006).
  • 16. Chornogubsky, L., Goin, F. J. & Reguero, M. A reassessment of Antarctic polydolopid marsupials (Middle Eocene, La Meseta Formation).Antarct.Sci. 21, 285-297 (2009).
  • 17. Bomfleur, B., Mors, T., Ferraguti, M., Reguero, M. A. & McLoughlin, S. Fossilized spermatozoa preserved in a 50-Myr-old annelid cocoon from Antarctica. Biol.Letters 11, 20150431, https://doi.org/10.1098/rsbl.2015.0431 (2015).
  • 18. Engelbrecht, A., Mors, T., Reguero, M. A. & Kriwet, J. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica.J.S. Am.Earth Sci.78, 175-189 (2017).
  • 19. Engelbrecht,A., Mors,T., Reguero,M.A.& Kriwet, J.New carcharhiniform sharks (Chondrichthyes, Elasmobranchii) from the early to middle Eocene of Seymour Island, Antarctic Peninsula.J.Vertebr. Paleontol.10, e1371724 (2017).
  • 20. Engelbrecht, A., Mors, T., Reguero, M. A. & Kriwet, J. Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula. J.Syst. Palaeontol. 15, 969-990 (2017).
  • 21. Engelbrecht, A., Mors, T., Reguero, M. A. & Kriwet, J. Skates and rays (Elasmobranchii, Batomorphii) from the Eocene La Meseta and Submeseta formations, Seymour Island, Antarctica. Hist. Biol.10, 1-17 (2018).
  • 22. Marrama, G., Engelbrecht, A., Mors, T., Reguero, M. A. & Kriwet, J. The southernmost occurrence of Brachycarcharias (Lamniformes, Odontaspididae) from the Eocene of Antarctica provides new information about the paleobiogeography and paleobiology of Paleogene sand tiger sharks. Riv.Ital.Paleontol. S. 124, 283-298 (2018).
  • 23. Douglas,P.M. J. et al. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.P.Natl Acad.Sci. USA 111, 6582-6587 (2014).
  • 24. Amenabar, C. R., Montes, M., Nozal, F.& Santillana, S. Dinoflagellate cysts of the La Meseta Formation (middle to late Eocene), Antarctic Peninsula: implications for biostratigraphy, palaeoceanography and palaeoenvironment. Geological Magazine, 1-16, https://doi.org/10.1017/S0016756819000591 (2019).
  • 25. Fischer, G.Zoognosia.Tabulis Synopticis Illustrata, in Usum Praelectionum Academiae Imperialis Medico-Chirurgicae Mosquensis Edita 1-465 (Typis Nicolai Sergeidis Vsevolozsky, 1813).
  • 26. Reig,O. A. Proposiciones para una nueva macrosistematica de los anuros (nota preliminar).Physis 21, 231-297 (1958).
  • 27. Frost, D. R. et al. The amphibian tree of life.B. Am. Mus. Nat. Hist. 297, 1-370 (2006).
  • 28. Reig, O. A. Las relaciones genericas del anuro chileno Calyptocephalella gayi (Dum. and Bibr.). Actas y Trabajos I. Congreso Sudamericano Zoologia, La Plata 1, 271-278 (1960).
  • 29. Strand, E.Miscellanea nomenclatorica zoologica et paleontologica I-II. Arch. Naturgesch. 92, 30-75 (1928).
  • 30. Gardner, J.D. et al. Comparative morphology of the ilium of anurans and urodeles (Lissamphibia) and a re-assessment of the anuran affinities of Nezpercius dodsoni Blob et al., 2001.J. Vertebr.Paleontol. 30, 1684-1696 (2010).
  • 31. Bailon, S. Differenciation osteologique des Anoures (Amphibia, Anura) de France 1-41 (Centre de Recherches Archeologiques du CNRS, 1999).
  • 32. Rage, J.-C. Frogs (Amphibia, Anura) from the Eocene and Oligocene of the phosphorites du Quercy (France). An overview.Foss. Imprint 72, 53-66 (2016).
  • 33. Folie, A. et al. Early Eocene frogs from Vastan Lignite Mine, Gujarat, India. Acta Palaeontol.Pol. 58, 511-524 (2013).
  • 34. Clarac, F., Buffrenil, V., de, Brochu, C. & Cubo, J.The evolution of bone ornamentation in Pseudosuchia: morphological constraints versus ecological adaptation. Biol.J.Linn. Soc.121, 395-408 (2017).
  • 35. Scheyer, T.M., Sander, P.M., Joyce, W. G., Bohme, W. & Witzel, U. A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary implications. Org.Divers.Evol. 7, 136-144 (2007).
  • 36. Gardner, J. D., Evans, S. E. & Sigogneau-Russell, D. New albanerpetontid amphibians from the Early Cretaceous of Morocco and Middle Jurassic of England.Acta Palaeontol. Pol.48, 301-319 (2003).
  • 37. Gardner, J. D. Albanerpetontid amphibians from the Upper Cretaceous (Campanian and Maastrichtian) of North America. Geodiversitas 22, 349-388 (2000).
  • 38. Gardner, J.D. & Rage, J.-C.The fossil record of lissamphibians from Africa, Madagascar, and the Arabian Plate.Palaeobio.Palaeoenv. 96, 169-220 (2016).
  • 39. Estes, R. Gymnophiona, Caudata 1-115 (Gustav Fischer,1981).
  • 40. Schoch, R., Poschmann, M. & Kupfer, A. The salamandrid Chelotriton paradoxus from Enspel and Randeck Maars (Oligocene-Miocene, Germany).Palaeobio.Palaeoenv.95, 77-86 (2015).
  • 41. Vickaryous, M. K. & Hall, B. K. Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms.J.Morphol.269, 398-422 (2008).
  • 42. Alibardi, L. & Thompson, M. B. Scale morphogenesis and ultrastructure of dermis during embryonic development in the alligator (Alligator mississippiensis, Crocodilia, Reptilia).Acta Zool.81, 325-338 (2000).
  • 43. Buffrenil,Vde Morphogenesis of bone ornamentation in extant and extinct crocodilians. Zoomorphology 99, 155-166 (1982).
  • 44. Estes, R. Sauria terrestria, Amphisbaenia 1-249 (Gustav Fischer, 1983).
  • 45. Cernansky, A. & Auge, M. L. New species of the genus Plesiolacerta (Squamata: Lacertidae) from the upper Oligocene (MP28) of Southern Germany and a revision of the type species Plesiolacerta lydekkeri.Palaeontology 56, 79-94 (2013).
  • 46. Cicimurri, D. J., Knight, J. L., Self-Trail, J. M. & Ebersole, S. M. Late Paleocene glyptosaur (Reptilia: Anguidae) osteoderms from South Carolina, USA. J.Paleontol. 90, 147-153 (2016).
  • 47. Vasilyan, D. Eocene Western European endemic genus Thaumastosaurus: New insights into the question "Are the Ranidae known prior to the Oligocene?".PeerJ 6, https://doi.org/10.7717/peerj.5511 (2018).
  • 48. Gomez, R. O., Baez, A. M. & Muzzopappa, P. A new helmeted frog (Anura: Calyptocephalellidae) from an Eocene subtropical lake in northwestern Patagonia, Argentina. J.Vertebr. Paleontol. 31, 50-59 (2011).
  • 49. Baez, A. M. & Gomez, R. O. Dealing with homoplasy: osteology and phylogenetic relationships of the bizarre neobatrachian frog Baurubatrachus pricei from the Upper Cretaceous of Brazil.J.Syst.Palaeontol.16, 279-308 (2018).
  • 50. Evans, S. E., Groenke, J. R., Jones, M. E. H., Turner, A. H. & Krause, D. W. New material of Beelzebufo, a hyperossified frog (Amphibia: Anura) from the Late Cretaceous of Madagascar. Plos One 9, e87236, https://doi.org/10.1371/journal.pone.0087236 (2014).
  • 51. Schaeffer,B.Anurans from the early Tertiary of Patagonia.B. Am. Mus.Nat. Hist. 93, 41-68 (1949).
  • 52. Baez, A.M. The Late Cretaceous Fauna of Los Alamitos, Patagonia, Argentina (ed. Bonaparte J. F.) 121-130 (Museo Argentino de Sciencias Naturales Bernadino Rivadavia,1987).
  • 53. Otero, R. A., Jimenez-Huidobro, P., Soto-Acuna, S. & Yury-Yanez, R. E. Evidence of a giant helmeted frog (Australobatrachia, Calyptocephalellidae) from Eocene levels of the Magallanes Basin, southernmost Chile.J.S. Am. Earth Sci. 55, 133-140 (2014).
  • 54. Vitt, L. J. & Caldwell, J. P. Herpetology. An introductory biology of amphibians and reptiles 1-776 (Elsevier Academic Press, Amsterdam, 2013).
  • 55. Veloso, A., Formas, R.J. & Gerson, H. Calyptocephalella gayi. The IUCN Red List of Threatened Species (2010).
  • 56. Cei, J.M. Batracios de Chile 1-128 (Universidad de Chile, Santiago, 1962).
  • 57. Nicoli, L., Muzzopappa, P. & Faivovich, J. The taxonomic placement of the Miocene Patagonian frog Wawelia gerholdi (Amphibia: Anura). Alcheringa 40, 153-160, https://doi.org/10.1080/03115518.2016.1101998 (2016).
  • 58. Tyler,M.J.& Godthelp, H. A new species of Lechriodus Boulenger (Anura:Leptodactylidae) from the Early Eocene of Queensland. T.Roy. Soc. South Aust.117, 187-189 (1993).
  • 59. Feng, Y.-J. et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary.P.Natl Acad.Sci.USA 114, E5864-E5870 (2017).
  • 60. Vizcaino, S.F., Kay, R.F.& Bargo, M.S. (eds.). Early Miocene paleobiology in Patagonia: High-latitude paleocommunities of the Santa Cruz Formation 1-378 (Cambridge Univ. Press,2012).
  • 61. Francis, J.E. et al. Antarctica: A keystone in a changing world; proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California (ed.Cooper, A. K. & Barrett, P.) 19-27 (National Academies Press, 2008).
  • 62. Nowak,R.M.& Dickman, C.R. Walker's marsupials of the world 1-226 (Johns Hopkins University Press, 2005).
  • 63. Nilsson,M.A.et al. Tracking marsupial evolution using archaic genomic retroposon insertions.Plos biology 8, e1000436, https://doi. org/10.1371/journal.pbio.1000436 (2010).
  • 64. Goin, F. et al. New marsupial (Mammalia) from the Eocene of Antarctica, and the origins and affinities of the Microbiotheria. Rev. Asoc. Paleontol.Argentina 64, 597-603 (2007).
  • 65. Unknown.Morphosource. Available at, https://www.morphosource.org/ (2020).
  • 66. Gomez, R. O. & Turazzini, G. F. An overview of the ilium of anurans (Lissamphibia, Salientia), with a critical appraisal of the terminology and primary homology of main ilial features.J. Vertebr. Paleontol. 36, e1030023 (2016).
  • 67. The world bank groups. Climate Change Knowledge Portal (2017).