Published April 30, 2025 | Version v1
Journal article Open

Rhizosphere bacterial communities of Namib Desert plant species: Evidence of specialised plant-microbe associations

  • 1. Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
  • 2. Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
  • 3. Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa & Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
  • 4. British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom & Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
  • 5. Gobabeb-Namib Research Institute, Walvis Bay, Namibia

Description

Maphosa, Silindile, Steyn, Mégan, Lebre, Pedro H., Gokul, Jarishma K., Convey, Peter, Marais, Eugene, Maggs-Kölling, Gillian, Cowan, Don A. (2025): Rhizosphere bacterial communities of Namib Desert plant species: Evidence of specialised plant-microbe associations. Microbiological Research 293: 1-16, DOI: 10.1016/j.micres.2025.128076, URL: https://doi.org/10.1016/j.micres.2025.128076

Files

source.pdf

Files (11.0 MB)

Name Size Download all
md5:9af9bc3cb384e45da2623ac8c8c7cedd
11.0 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFF9BC3CFF84E45DA262FFC8FFC7FFDD

References

  • Abdelmoteleb, A., Gonz´alez-Mendoza, D., 2020. A novel Streptomyces rhizobacteria from desert soil with diverse anti-fungal properties. Rhizosphere 16, 100243.
  • Afridi, M.S., Kumar, A., Javed, M.A., Dubey, A., de Medeiros, F.H.V., Santoyo, G., 2024. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol. Res. 279, 127564.
  • Ahmad, H.M., Fiaz, S., Hafeez, S., Zahra, S., Shah, A.N., Gul, B., Aziz, O., Fakhar, A., Rafique, M., Chen, Y., 2022. Plant growth-promoting rhizobacteria eliminate the effect of drought stress in plants: a review. Front. Plant Sci. 13, 875774.
  • ALKahtani, M.D., Fouda, A., Attia, K.A., Al-Otaibi, F., Eid, A.M., Ewais, E.E.-D., Hijri, M., St-Arnaud, M., Hassan, S.E.-D., Khan, N., 2020. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy 10, 1325.
  • Alsharif, W., Saad, M.M., Hirt, H., 2020. Desert microbes for boosting sustainable agriculture in extreme environments. Front. Microbiol. 11, 1666.
  • Anderson, M.J., Ellingsen, K.E., McArdle, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683-693.
  • Armanhi, J.S.L., De Souza, R.S.C., NdB, Damasceno, De Araujo, L.M., Imperial, J., Arruda, P., 2018. A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome. Front. Plant Sci. 8, 2191.
  • Aslam, M.M., Idris, A.L., Zhang, Q., Weifeng, X., Karanja, J.K., Wei, Y., 2022. Rhizosphere microbiomes can regulate plant drought tolerance. Pedosphere 32, 61-74.
  • Bandurska, H., 2022. Drought stress responses: coping strategy and resistance. Plants 11, 922.
  • Basu, A., Prasad, P., Das, S.N., Kalam, S., Sayyed, R., Reddy, M., El Enshasy, H., 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13, 1140.
  • Becker, J., Wittmann, C., 2020. Microbial production of extremolytes-high-value active ingredients for nutrition, health care, and well-being. Curr. Opin. Biotechnol. 65, 118-128.
  • Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852-857.
  • Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581-583.
  • Cao, Y., Dong, Q., Wang, D., Zhang, P., Liu, Y., Niu, C., 2022. microbiomeMarker: an R/ Bioconductor package for microbiome marker identification and visualization. Bioinformatics 38, 4027-4029.
  • Carlson, R., Tugizimana, F., Steenkamp, P.A., Dubery, I.A., Hassen, A.I., Labuschagne, N., 2020. Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiol. Res. 232, 126388.
  • Castro-Severyn, J., Fortt, J., Sierralta, M., Alegria, P., Donoso, G., Choque, A., Avellaneda, A.M., Pardo-Est´e, C., Saavedra, C.P., Stoll, A., 2024. Rhizospheric bacteria from the Atacama Desert hyper-arid core: cultured community dynamics and plant growth promotion. Microbiol. Spectr. e00056-00024.
  • Chambers, J.M., Freeny, A.E., Heiberger, R.M., 2017. Analysis of variance; designed experiments. Statistical models in S. Routledge, pp. 145-193.
  • Chauhan, J., Gohel, S., 2022. Exploring plant growth-promoting, biocatalytic, and antimicrobial potential of salt tolerant rhizospheric Georgenia soli strain TSm39 for sustainable agriculture. Braz. J. Microbiol. 53, 1817-1828.
  • Chen, J.-z., Huang, X.-l., Sun, Q.-w., Liu, J.-m., 2023. Bulk soil microbial reservoir or plant recruitment dominates rhizosphere microbial community assembly: evidence from the rare, endangered Lauraceae species Cinmaomum migao. Ecol. Indic. 148, 110071.
  • Chen, L., Liu, Y., 2024. The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology 13, 95.
  • Chieb, M., Gachomo, E.W., 2023. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biol. 23, 407.
  • Contreras, M.J., Leal, K., Bruna, P., Nunez-Montero t, K., Gom´ez-Espinoza, O., Bravo, L., Cayo, M., Dinamarca, M.A., Ibacache-Quiroga, C., Barrientos, L., 2023. Commonalities between the Atacama Desert and Antarctica rhizosphere microbial communities. Front. Microbiol. 14, 1197399.
  • Conway, J.R., Lex, A., Gehlenborg, N., 2017. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938-2940.
  • Cowan, D.A., Hopkins, D., Jones, B., Maggs-Kolling ¨, G., Majewska, R., Ramond, J.-B., 2020. Microbiomics of Namib desert habitats. Extremophiles 24, 17-29.
  • Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C., Langille, M.G., 2020. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685-688.
  • Eckardt, F., Soderberg, K., Coop, L., Muller, A., Vickery, K., Grandin, R., Jack, C., Kapalanga, T., Henschel, J., 2013. The nature of moisture at Gobabeb, in the central Namib Desert. J. Arid Environ. 93, 7-19.
  • Eida, A.A., Ziegler, M., Lafi, F.F., Michell, C.T., Voolstra, C.R., Hirt, H., Saad, M.M., 2018. Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS One 13, e0208223.
  • Fan, W., Tang, F., Wang, J., Dong, J., Xing, J., Shi, F., 2023. Drought-induced recruitment of specific root-associated bacteria enhances adaptation of alfalfa to drought stress. Front. Microbiol. 14, 1114400.
  • Fetsiukh, A., Conrad, J., Bergquist, J., Timmusk, S., 2021. Silica particles trigger the exopolysaccharide production of harsh environment isolates of growth-promoting rhizobacteria and increase their ability to enhance wheat biomass in droughtstressed soils. Int J. Mol. Sci. 22.
  • Filgueiras, L., Silva, R., Almeida, I., Vidal, M., Baldani, J.I., Meneses, C.H.S.G., 2020. Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant Soil 451, 57-73.
  • Fiodor, A., Singh, S., Pranaw, K., 2021. The contrivance of plant growth promoting microbes to mitigate climate change impact in agriculture. Microorganisms 9.
  • Fitzpatrick, C.R., Copeland, J., Wang, P.W., Guttman, D.S., Kotanen, P.M., Johnson, M.T., 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. 115, E1157-E1165.
  • Friendly, M., 2002. Corrgrams: Exploratory displays for correlation matrices. Am. Stat. 56, 316-324.
  • Frossard, A., Ramond, J.-B., Seely, M., Cowan, D.A., 2015. Water regime history drives responses of soil Namib Desert microbial communities to wetting events. Sci. Rep. 5, 12263.
  • Fuentes, A., Herrera, H., Charles, T.C., Arriagada, C., 2020. Fungal and bacterial microbiome associated with the rhizosphere of native plants from the atacama desert. Microorganisms 8.
  • Genitsaris, S., Stefanidou, N., Leontidou, K., Matsi, T., Karamanoli, K., Mellidou, I., 2020. Bacterial communities in the rhizosphere and phyllosphere of halophytes and drought-tolerant plants in mediterranean ecosystems. Microorganisms 8, 1708.
  • Gontia-Mishra, I., Sapre, S., Sharma, A., Tiwari, S., 2016. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol. 18, 992-1000.
  • Guesmi, A., Ettoumi, B., El Hidri, D., Essanaa, J., Cherif, H., Mapelli, F., Marasco, R., Rolli, E., Boudabous, A., Cherif, A., 2013. Uneven distribution of Halobacillus trueperi species in arid natural saline systems of southern Tunisian Sahara. Microb. Ecol. 66, 831-839.
  • Guo, Y.Q., Zhao, S.C., XU, D.I., Guo, Y.N., HE, A.M., CHANG, J.H., BAO, Y.Y., 2020. Screening and Identification of Growth-promoting Bacteria from Three Rare Plants Rhizosphere Soil in Desert and Its Effect on the Growth of Sorghum Seedlings. Acta Agrestia Sinica 28, 1121.
  • Hartmann, A., Klink, S., Rothballer, M., 2021. Plant growth promotion and induction of systemic tolerance to drought and salt stress of plants by quorum sensing autoinducers of the N-acyl-homoserine lactone type: recent developments. Front. Plant Sci. 12, 683546.
  • Hashem, A., Tabassum, B., Fathi Abd Allah, E., 2019. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 26, 1291-1297.
  • Herlemann, D.P., Labrenz, M., Jurgens, K., Bertilsson, S., Waniek, J.J., Andersson, A.F., 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571-1579.
  • Huang, G., Li, Y., Su, Y.G., 2015. Divergent responses of soil microbial communities to water and nitrogen addition in a temperate desert. Geoderma 251, 55-64.
  • Hussain, Q., Asim, M., Zhang, R., Khan, R., Farooq, S., Wu, J., 2021. Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules 11.
  • Iqbal, S., Wang, X., Mubeen, I., Kamran, M., Kanwal, I., Diaz, G.A., Abbas, A., Parveen, A., Atiq MN, Alshaya, H., 2022. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front. Plant Sci. 12, 3378.
  • Jalal, R.S., Sheikh, H.I., Alotaibi, M.T., Shami, A.Y., Ashy, R.A., Baeshen, N.N., Abulfaraj, A.A., Baz, L., Refai, M., Baeshen, N.A., 2022. Corrigendum: the microbiome of Suaeda monoica and Dipterygium glaucum from southern Corniche (Saudi Arabia) reveals different recruitment patterns of bacteria and archaea. Front. Mar. Sci. 9, 1109536.
  • Jenkins, M.B., 2003. Rhizobial and bradyrhizobial symbionts of mesquite from the Sonoran Desert: salt tolerance, facultative halophily and nitrate respiration. Soil Biol. Biochem. 35, 1675-1682.
  • Johnston-Monje, D., Lundberg, D.S., Lazarovits, G., Reis, V.M., Raizada, M.N., 2016. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405, 337-355.
  • Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150202.
  • Kaplan, D., Maymon, M., Agapakis, C.M., Lee, A., Wang, A., Prigge, B.A., Volkogon, M., Hirsch, A.M., 2013. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivationdependent and cultivation-independent methods. Am. J. Bot. 100, 1713-1725.
  • Karray, F., Gargouri, M., Chebaane, A., Mhiri, N., Mliki, A., Sayadi, S., 2020. Climatic aridity gradient modulates the diversity of the rhizosphere and endosphere bacterial microbiomes of Opuntia ficus-indica. Front. Microbiol. 11, 1622.
  • Kolde, R., 2019. pheatmap: pretty heatmaps. R. Package Version 1.
  • Korenblum, E., Massalha, H., Aharoni, A., 2022. Plant-microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell 34, 3168-3182.
  • Kumar, M., Tomar, R.S., Lade, H., Paul, D., 2016. Methylotrophic bacteria in sustainable agriculture. World J. Microbiol. Biotechnol. 32, 1-9.
  • Lebre, P.H., De Maayer, P., Cowan, D.A., 2017. Xerotolerant bacteria: surviving through a dry spell. Nat. Rev. Microbiol. 15, 285-296.
  • Le´on-Sobrino, C., Ramond, J.-B., Maggs-Kolling ¨, G., Cowan, D.A., 2019. Nutrient acquisition, rather than stress response over diel cycles, drives microbial transcription in a hyper-arid Namib Desert soil. Front. Microbiol. 10, 1054.
  • Lester, E.D., Satomi, M., Ponce, A., 2007. Microflora of extreme arid Atacama Desert soils. Soil Biol. Biochem. 39, 704-708.
  • Li, W., Li, Y., Lv, J., He, X., Wang, J., Teng, D., Jiang, L., Wang, H., Lv, G., 2022. Rhizosphere effect alters the soil microbiome composition and C, N transformation in an arid ecosystem. Appl. Soil Ecol. 170, 104296.
  • Liu, H., Li, J., Carvalhais, L.C., Percy, C.D., Prakash Verma, J., Schenk, P.M., Singh, B.K., 2021. Evidence for the plant recruitment of beneficial microbes to suppress soilborne pathogens. N. Phytol. 229, 2873-2885.
  • Liu, W., Sikora, E., Park, S.W., 2020. Plant growth-promoting rhizobacterium, Paenibacillus polymyxa CR1, upregulates dehydration-responsive genes, RD29A and RD29B, during priming drought tolerance in arabidopsis. Plant Physiol. Biochem 156, 146-154.
  • Liu, H., Song, S., Zhang, H., Li, Y., Niu, L., Zhang, J., Wang, W., 2022. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. Int. J. Mol. Sci. 23, 14824.
  • Liu, B., Zeng, F.-J., Arndt, S.-K., He, J.-X., Luo, W.-C., Song, C., 2013. Patterns of root architecture adaptation of a phreatophytic perennial desert plant in a hyperarid desert. South Afr. J. Bot. 86, 56-62.
  • Mapelli, F., Marasco, R., Fusi, M., Scaglia, B., Tsiamis, G., Rolli, E., Fodelianakis, S., Bourtzis, K., Ventura, S., Tambone, F., 2018. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. ISME J. 12, 1188-1198.
  • Marasco, R., Fusi, M., Mosqueira, M., et al., 2022. Rhizosheath-root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. Environ. Micro 17, 14.
  • Marasco, R., Fusi, M., Rolli, E., Ettoumi, B., Tambone, F., Borin, S., Ouzari, H.I., Boudabous, A., Sorlini, C., Cherif, A., 2021. Aridity modulates belowground bacterial community dynamics in olive tree. Environ. Microbiol. 23, 6275-6291.
  • Marasco, R., Mosqueira, M.J., Fusi, M., Ramond, J.-B., Merlino, G., Booth, J.M., Maggs-K¨olling, G., Cowan, D.A., Daffonchio, D., 2018. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 6, 1-18.
  • Mashhadi Z. (2010) Identification and characterization of the enzymes involved in biosynthesis of FAD and Tetrahydromethanopterin in Methanocaldococcus jannaschii. Thesis, Virginia Tech Blacksburg, VA.
  • Mathur, P., Roy, S., 2021. Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. Physiol. Plant. 172, 1016-1029.
  • Maurice, K., Laurent-Webb, L., Bourceret, A., Boivin, S., Boukcim, H., Selosse, M.-A., Ducousso, M., 2024. Networking the desert plant microbiome, bacterial and fungal symbionts structure and assortativity in co-occurrence networks. Environ. Micro 19, 65.
  • McKight, P.E., Najab, J., 2010. Krus. Wallis Test. Corsini Encycl. Psychol. 1-1.
  • McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8, e61217.
  • Medici, A., Laloi, M., Atanassova, R., 2014. Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Lett. 588, 3989-3997.
  • Morcillo, R.J.L., Manzanera, M., 2021. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11.
  • Mosqueira, M.J., Marasco, R., Fusi, M., Michoud, G., Merlino, G., Cherif, A., Daffonchio, D., 2019. Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci. Rep. 9, 4033.
  • Msaddak, A., Dur´an, D., Rejili, M., Mars, M., Ruiz-Argueso, T., Imperial, J., Palacios, J., Rey, L., 2017. Diverse bacteria affiliated with the genera Microvirga, Phyllobacterium, and Bradyrhizobium nodulate Lupinus micranthus growing in soils of Northern Tunisia. Appl. Environ. Microbiol. 83, e02820-02816.
  • Mukhtar, S., Mehnaz, S., Malik, K.A., 2021. Comparative study of the rhizosphere and root endosphere microbiomes of cholistan desert plants. Front Microbiol 12, 618742.
  • Murcia, G., Fontana, A., Pontin, M., Baraldi, R., Bertazza, G., Piccoli, P.N., 2017. ABA and GA(3) regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 135, 34-52.
  • Nadeem, S.M., Ahmad, M., Tufail, M.A., Asghar, H.N., Nazli, F., Zahir, Z.A., 2021. Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiol. Plant 172, 463-476.
  • Naidoo, Y., Valverde, A., Pierneef, R.E., Cowan, D.A., 2022. Differences in precipitation regime shape microbial community composition and functional potential in Namib Desert soils. Microb. Ecol. 83, 689-701.
  • Naing, A.H., Campol, J.R., Kang, H., Xu, J., Chung, M.Y., Kim, C.K., 2022. Role of ethylene biosynthesis genes in the regulation of salt stress and drought stress tolerance in petunia. Front. Plant Sci. 13, 844449.
  • Naseem, H., Ahsan, M., Shahid, M.A., Khan, N., 2018. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J. Basic Microbiol 58, 1009-1022.
  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O' hara, R., Simpson, G.L., Solymos, P., 2019. Package 'vegan'. Community Ecol. Package, Version 2.
  • Olanrewaju, O.S., Ayangbenro, A.S., Glick, B.R., Babalola, O.O., 2019. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl. Microbiol Biotechnol. 103, 1155-1166.
  • Qu, Q., Zhang, Z., Peijnenburg, W., Liu, W., Lu, T., Hu, B., Chen, J., Chen, J., Lin, Z., Qian, H., 2020. Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 68, 5024-5038.
  • Ramond, J.-B., Jordaan, K., Diez, B., Heinzelmann, S.M., Cowan, D.A., 2022. Microbial biogeochemical cycling of nitrogen in arid ecosystems. Microbiol. Mol. Biol. Rev. 86, e00109-00121.
  • Rashid, U., Yasmin, H., Hassan, M.N., Naz, R., Nosheen, A., Sajjad, M., Ilyas, N., Keyani, R., Jabeen, Z., Mumtaz, S., 2021. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Rep. 1-21.
  • Richter, A.A., Mais, C.-N., Czech, L., Geyer, K., Hoeppner, A., Smits, S.H., Erb, T.J., Bange, G., Bremer, E., 2019. Biosynthesis of the stress-protectant and chemical chaperon ectoine: biochemistry of the transaminase EctB. Front. Microbiol. 10, 2811.
  • Roberts, E.L., 2022. Plant growth promotion by rhizosphere dwelling microbes. Rhizosphere Engineering. Elsevier, pp. 1-17.
  • Robeson, M.S., O' Rourke, D.R., Kaehler, B.D., Ziemski, M., Dillon, M.R., Foster, J.T., Bokulich, N.A., 2021. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 17, e1009581.
  • Romano, I., Ventorino, V., Pepe, O., 2020. Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front. Plant Sci. 11, 6.
  • Salvi, P., Manna, M., Kaur, H., Thakur, T., Gandass, N., Bhatt, D., Muthamilarasan, M., 2021. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep. 40, 1305-1329.
  • Sathiyaraj, G., Kim, M.K., Kim, J.-Y., Kim, S.-J., Jang, J.H., Maeng, S., Kang, M.-S., Srinivasan, S., 2018. Complete genome sequence of Microvirga sp. 17mud 1-3, a radiation-resistant bacterium. Mol. Cell. Toxicol. 14, 347-352.
  • Scola, V., Ramond, J.-B., Frossard, A., Zablocki, O., Adriaenssens, E.M., Johnson, R.M., Seely, M., Cowan, D.A., 2018. Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Microb. Ecol. 75, 193-203.
  • Seely, M., 1979. Ecology of a living desert: twenty years of research in the Namib. South Afr. J. Sci. 75, 298.
  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1-18.
  • Shapiro, S.S., Wilk, M.B., HJ, Chen, 1968. A comparative study of various tests for normality. J. Am. Stat. Assoc. 63, 1343-1372.
  • Siddharthan, N., Sangeetha, M., Asokan, N., Balagurunathan, R., Hemalatha, N., 2022. Actinobacterial enzymes-An approach for engineering the rhizosphere microorganisms as plant growth promotors. Rhizosphere engineering. Elsevier, pp. 273-292.
  • Stomeo, F., Valverde, A., Pointing, S.B., McKay, C.P., Warren-Rhodes, K.A., Tuffin, M.I., Seely, M., Cowan, D.A., 2013. Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17, 329-337.
  • Sun, S., Ma, B., Wang, G., Tan, X., 2023. Linking microbial biogeochemical cycling genes to the rhizosphere of pioneering plants in a glacier foreland. Sci. Total Environ. 872, 161944.
  • Sun, X., Zhao, J., Zhou, X., Bei, Q., Xia, W., Zhao, B., Zhang, J., Jia, Z., 2022. Salt tolerance-based niche differentiation of soil ammonia oxidizers. ISME J. 16, 412-422.
  • Team, R.C., 2020. RA language and environment for statistical computing. R. Found. Stat.
  • Timmusk, S., Abd El-Daim, I.A., Copolovici, L., Tanilas, T., Kannaste ¨, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenstrom ¨, E., Niinemets U, 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PloS One 9, e96086.
  • Vardharajula, S., Zulfikar, Ali S., Grover, M., Reddy, G., Bandi, V., 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6, 1-14.
  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Nasrulhaq Boyce, A., 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21, 573.
  • Verma, P., Yadav, A.N., Kumar, V., Singh, D.P., Saxena, A.K., 2017. Beneficial plantmicrobes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. Plant-Microbe Interact. agro-Ecol. Perspect.: Microb. Interact. agro-Ecol. Impacts 2, 543-580.
  • Veyisoglu, A., Tatar, D., Saygin, H., Inan, K., Cetin, D., Guven, K., Tuncer, M., Sahin, N., 2016. Microvirga makkahensis sp. nov., and Microvirga arabica sp. nov., isolated from sandy arid soil. Antonie Van. Leeuwenhoek 109, 287-296.
  • Vikram, S., Guerrero, L.D., Makhalanyane, T.P., Le, P.T., Seely, M., Cowan, D.A., 2016. Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ. Microbiol. 18, 1875-1888.
  • Vurukonda, S.S., Vardharajula, S., Shrivastava, M., Sk, Z.A., 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184, 13-24.
  • Wang, C.-J., Yang, W., Wang, C., Gu, C., Niu, D.-D., Liu, H.-X., Wang, Y.-P., Guo, J.-H., 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. Plos One 7, e52565.
  • Warrad, M., Hassan, Y.M., Mohamed, M.S., Hagagy, N., Al-Maghrabi, O.A., Selim, S., Saleh, A.M., AbdElgawad, H., 2020. A bioactive fraction from Streptomyces sp. enhances maize tolerance against drought stress. J. Microbiol. Biotechnol. 30, 1156.
  • Wei, Y., Wang, F., Gao, J., Huang, Y., Ren, W., Sheng, H., 2021. Culture-dependent and culture-independent characterization of bacterial community diversity in different types of sandy lands: the case of Minqin County, China. BMC Microbiol. 21, 1-15.
  • Wickham, H., Chang, W., Henry, L., Pedersen, T., Takahashi, K., Wilke, C., Woo, K., 2018. R. Package" ggplot2": Creat. Elegant Data Vis. Using Gramm. Graph. Version 3.
  • Wilcoxon, F., Katti, S., Wilcox, R.A., 1970. Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel. Tables Math. Stat. 1, 171-259.
  • Williams, R.J., Howe, A., Hofmockel, K.S., 2014. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5.
  • Wu, M.-H., Li, T., Zhang, G.-S., Wu, F.-S., Chen, T., Zhang, B.-L., Wu, X.-K., Liu, G.-X., Zhang, K.-C., Zhang, W., 2023. Seasonal variation of hypolithic microbiomes in the gobi desert: seasonal variation of hypolithic microbiomes in the gobi desert. Microb. Ecol. 85, 1382-1395.
  • Yang, Y., Liu, W., Huang, T., Yang, Y., 2023. Similarities and differences in the rhizosphere biota among different ephemeral desert plants in Gurbantunggut Desert. Environ. Sci. Eur. 35, 18.
  • Yoshida, T., Mogami, J., Yamaguchi-Shinozaki, K., 2014. ABA-dependent and ABAindependent signaling in response to osmotic stress in plants. Curr. Opin. Plant Biol. 21, 133-139.
  • Zarei, T., 2022. Balancing water deficit stress with plant growth-promoting rhizobacteria: a case study in maize. Rhizosphere, 100621.
  • Zhao, M., Zhao, J., Yuan, J., Hale, L., Wen, T., Huang, Q., Vivanco, J.M., Zhou, J., Kowalchuk, G.A., Shen, Q., 2021. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell Environ. 44, 613-628.
  • Zhou, C., Ma, Z., Zhu, L., Xiao, X., Xie, Y., Zhu, J., Wang, J., 2016. Rhizobacterial strain bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int. J. Mol. Sci. 17.
  • Zia, R., Nawaz, M.S., Siddique, M.J., Hakim, S., Imran, A., 2021. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 242, 126626.