Published February 28, 2023 | Version v1
Journal article Open

Hiding in plain sight: Integrative analyses uncover a cryptic Salvia species in Europe

  • 1. * Tamás Malkócs, & Levente Laczkó, & Alexandru S. Bădărău & Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, & 4032 Debrecen, Hungary
  • 2. * Thomas Kuhn, & Ivan Moysiyenko, & Department of Botany, Institute of Biology and Ecology, University of Debrecen, Egyetem tér & * Thomas Kuhn, & Institute of Aquatic Ecology, Centre for Ecological Research, 4026 Debrecen, Hungary
  • 3. * Thomas Kuhn, & Ivan Moysiyenko, & Department of Botany, Institute of Biology and Ecology, University of Debrecen, Egyetem tér & Ivan Moysiyenko, & MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary & Ivan Moysiyenko, & - & ELKH-DE Conservation Biology Research Group, Debrecen, Hungary
  • 4. Department of Botany, Kherson State University, 27 Universytetska St., 73000 Kherson, Ukraine
  • 5. & Gábor Sramkó & Clinicilor Street, & Faculty of Environmental Sciences and Engineering, Babeş-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania

Description

Mátis, Attila, Malkócs, Tamás, Kuhn, Thomas, Laczkó, Levente, Moysiyenko, Ivan, Szabó, Anna, Bădărău, Alexandru S., Sramkó, Gábor (2023): Hiding in plain sight: Integrative analyses uncover a cryptic Salvia species in Europe. TAXON 72 (1): 78-97, DOI: 10.1002/tax.12818, URL: http://dx.doi.org/10.1002/tax.12818

Files

source.pdf

Files (6.2 MB)

Name Size Download all
md5:b93da7b807c191992269971e7bd631c2
6.2 MB Preview Download

Linked records

Additional details

References

  • Andrews, K.R., Good, J.M., Miller, M.R., Luikart, G. & Hohenlohe, P.A. 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17: 81-92. https://doi.org/10.1038/nrg.2015.28
  • Armbruster, W.S. 1985. Patterns of character divergence and the evolution of reproductive ecotypes of Dalechampia scandens (Euphorbiaceae). Evolution 39: 733-752. https://doi.org/10. 1111/j.1558-5646.1985.tb00416.x
  • Armbruster, W.S. 1986. Reproductive interactions between sympatric Dalechampia species: Are natural assemblages random or organized? Ecology 67: 522-533. https://doi.org/10.2307/1938595
  • Armbruster, W.S. 1993. Evolution of plant pollination systems: Hypotheses and tests with the Neotropical vine Dalechampia. Evolution 47: 1480-1505. https://doi.org/10.1111/j.1558-5646. 1993.tb02170.x
  • Armbruster, W.S. & Muchhala, N. 2009. Associations between floral specialization and species diversity: Cause, effect or correlation? Evol. Ecol. 23: 159-179. https://doi.org/10.1007/s10682-008- 9259-z
  • Armbruster, W.S., Edwards, M.E. & Debevec, E.M. 1994. Floral character displacement generates assemblage structure of western Australian Triggerplants (Stylidium). Ecology 75: 315-329. https://doi.org/10.2307/1939537
  • Armbruster, W.S., Shi, X.-Q. & Huang, S.-Q. 2014. Do specialized flowers promote reproductive isolation? Realized pollination accuracy of three sympatric Pedicularis species. Ann. Bot. (Oxford) 113: 331-340. https://doi.org/10.1093/aob/mct187
  • Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A., Selker, E.U., Cresko, W.A. & Johnson, E.A. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3: e3376. https://doi.org/10.1371/ journal.pone.0003376
  • Balescu, S., Jordanova, D., Brisson, L.F., Hardy, F., Huot, S. & Lamothe, M. 2020. Luminescence chronology of the northeastern Bulgarian loess-paleosol sequences (Viatovo and Kaolinovo). Quatern. Int. 552: 15-24. https://doi.org/10.1016/j.quaint. 2019.04.020
  • Bateman, R.M., Sramko, G. & Paun, O. 2018. Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids. Ann. Bot. (Oxford) 121: 85-105. https://doi.org/10.1093/aob/mcx129
  • Bates, D. Machler, M., Bolker, B. & Walker, S. 2015 Fitting linear mixed-effects models using lme4. J. Statist. Software 67(1): 1-48. https://doi.org/10.18637/jss.v067.i01
  • Bentham, G. 1848. Labiatae: LVII. Salvia. Pp. 262-358 in: Candolle, A. de (ed.), Prodromus systematis naturalis regni vegetabilis, vol. 12. Parisiis [Paris]: sumptibus Victoris Masson. https://doi. org/10.5962/bhl.title.286
  • Bernath, J. & Nemeth, E. 2000. Genetic improvement of cultivated species of the genus Salvia. Pp. 130-144 in: Kintzios, S.E. (ed.), Sage: The genus Salvia. London: CRC Press.
  • Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. 2014. BEAST2: A software platform for Bayesian evolutionary analysis. PLoS Computat. Biol. 10(4): e1003537. https://doi.org/ 10.1371/journal.pcbi.1003537
  • Briscoe Runquist, R., Grossenbacher, D., Porter, S., Kay, K. & Smith, J. 2016. Pollinator-mediated assemblage processes in California wildflowers. J. Evol. Biol. 29: 1045-1058. https://doi. org/10.1111/jeb.12845
  • Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N.A. & RoyChoudhury, A. 2012. Inferring species trees directly from biallelic genetic markers: Bypassing gene trees in a full coalescent analysis. Molec. Biol. Evol. 29: 1917-1932. https://doi.org/10. 1093/molbev/mss086
  • Catchen, J.M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J.H. 2011. Stacks: Building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 1: 171-182. https://doi.org/10.1534/g3.111.000240
  • Celep, F., Dirmenci, T. & Guner, O. 2015. Salvia hasankeyfense (Lamiaceae), a new species from Hasankeyf (Batman, Southeastern Turkey). Phytotaxa 227: 289-294. https://doi.org/10. 11646/phytotaxa.227.3.9
  • Celep, F., Atalay, Z., Dikmen, F., Dogan, M., Sytsma, K.J. & Classen-Bockhoff, R. 2020a.Pollination ecology, specialization,and genetic isolation in sympatric bee-pollinated Salvia (Lamiaceae). Int. J. Pl. Sci. 181: 800-811. https://doi.org/10.1086/710238
  • Celep, F., Raders, E. & Drew, B.T. 2020b. Two new hybrid species of Salvia (S. × karamanensis and S. × doganii) from Turkey: Evidence from molecular and morphological studies. Turk. J. Bot. 44: 647-660. https://doi.org/10.3906/bot-2007-28
  • Chen, Y., Jabbour, F., Novikov, A., Wang, W. & Gerber, S. 2018. A study of floral shape variation in Delphinieae (Ranunculaceae) using geometric morphometrics on herbarium specimens. Bot. Lett. 165: 368-376. https://doi.org/10.1080/23818107.2018.1427145
  • Classen-Bockhoff, R. 2017. Stamen construction, development and evolution in Salvia s.l. Nat. Volatiles Essential Oils 4: 28-48.
  • Classen-Bockhoff, R., Wester, P. & Tweraser, E. 2003. The staminal lever mechanism in Salvia L.(Lamiaceae): A review. Pl. Biol. 5: 33-41. https://doi.org/10.1055/s-2003-37973
  • Classen-Bockhoff, R., Crone, M. & Baikova, E. 2004a. Stamen development in Salvia L.: Homology reinvestigated. Int. J. Pl. Sci. 165: 475-498. https://doi.org/10.1086/386565
  • Classen-Bockhoff, R., Speck, T., Tweraser, E., Wester, P., Thimm, S. & Reith, M. 2004b. The staminal lever mechanism in Salvia L. (Lamiaceae): A key innovation for adaptive radiation? Organisms Diversity Evol. 4: 189-205. https://doi.org/10.1016/j.ode. 2004.01.004
  • Conea, A. 1970. Formatiuni cuaternare in Dobrogea: Loessuri si paleosoluri. Bucharest: Ed. Academiei Republicii Socialiste Romania.
  • Cordova, C.E. 2007. Holocene Mediterranization of the southern Crimean vegetation: Paleoecological records, regional climate change, and possible non-climatic influences. Pp. 319-344 in: Yanko-Hombach, V., Gilbert, A.S., Panin, N. & Dolukhanov, P.M. (eds.), The Black Sea flood question: Changes in coastline, climate, and human settlement. Dordrecht: Springer. https://doi. org/10.1007/978-1-4020-5302-3_13
  • Cozzolino, S. & Widmer, A. 2005. Orchid diversity: An evolutionary consequence of deception? Trends Ecol. Evol. 20: 487-494. https://doi.org/10.1016/j.tree.2005.06.004
  • Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A. & 1000 Genomes Project Analysis Group 2011. The variant call format and VCFtools. Bioinformatics 27: 2156-2158. https://doi.org/10.1093/bioinformatics/btr330
  • Davey, J.W., Hohenlohe, P.A., Etter, P.D., Boone, J.Q., Catchen, J.M. & Blaxter, M.L. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12: 499-510. https://doi.org/10. 1038/nrg3012
  • Dong, A.-X., Xin, H.-B., Li, Z.-J., Liu, H., Sun, Y.-Q., Nie, S., Zhao, Z.-N., Cui, R.-F., Zhang, R.-G., Yun, Q.-Z., Wang, X.-N., Maghuly, F., Porth, I., Cong, R.-C. & Mao, J.-F. 2018. High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant. Gigascience 7(7): giy068. https://doi.org/10.1093/gigascience/ giy068
  • Drew, B.T. & Sytsma, K.J. 2012. Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae). Amer. J. Bot. 99: 933-953. https://doi.org/10.3732/ajb.1100549
  • Drew, B.T., Gonzalez-Gallegos, J.G., Xiang, C.L., Kriebel, R., Drummond, C.P., Walked, J.B. & Sytsma, K.J. 2017. Salvia united: The greatest good for the greatest number. Taxon 66: 133-145. https://doi.org/10.12705/661.7
  • Eaton, D.A.R. & Ree, R.H. 2013. Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 62: 689-706. https://doi.org/ 10.1093/sysbio/syt032
  • Eisen, K.E. & Geber, M.A. 2018. Ecological sorting and character displacement contribute to the structure of communities of Clarkia species. J. Evol. Biol. 31: 1440-1458. https://doi.org/10.1111/ jeb.13365
  • Erdos, L., Ambarli, D., Anenkhonov, O.A., Batori, Z., Cserhalmi, D., Kiss, M., Kroel-Dulay, G., Liu, H., Magnes, M., Molnar, Z., Naqinezhad, A., Semenishchenkov, Y.A., Tolgyesi, C. & Torok, P. 2018. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 21: 345-362. https:// doi.org/10.1111/avsc.12382
  • Galstyan, T. 2021. A field guide to the plants of Armenia. Bath: Filbert Press.
  • Garcia, B.Y.B. & Zamudio, S. 2015. Four new species of Salvia (Lamiaceae) from central Mexico. Phytotaxa 217: 35-52. https://doi.org/10.11646/phytotaxa.217.1.3
  • Ghenea, C. & Radan, S.C. 1993. New data on the loess age in Dobrogea. Romanian J. Stratigr. 75: 133-137.
  • Grant, V. 1981. Plant speciation. New York: Columbia University Press. https://doi.org/10.7312/gran92318
  • Grant, V. 1994. Modes and origins of mechanical and ethological isolation in angiosperms. Proc. Natl. Acad. Sci. U.S.A. 91: 3-10. https://doi.org/10.1073/pnas.91.1.3
  • Harley, R.M., Atkins, S., Budantsev, A.L., Cantino, P.D., Conn, B. J., Grayer, R., Harley, M.M., de Kok, R., Krestovskaja, T., Morales, R., Paton, A.J., Ryding, O. & Upson, T. 2004. Labiatae. Pp. 167-275 in: Kadereit, J.W. (ed.), The families and genera of vascular plants, vol. 7, Flowering plants: Dicotyledons; Lamiales (except Acanthaceae including Avicenniaceae). Berlin & Heidelberg: Springer. https://doi.org/10.1007/978-3-642-18617-2_11
  • Hedge, I.C. 1982a. Salvia. P. 477 in: Rechinger, K.H. (ed.), Flora Iranica, vol. 150, Labiatae. Graz: Akademische Druck- u. Verlagsanstalt.
  • Hedge, I.C. 1982b. Salvia. Pp. 400-461 in: Davis, P.H. (ed.), Flora of Turkey, vol. 7. Edinburgh: Edinburgh University Press.
  • Herraiz-Penalver, D., Elguea-Culebras, O. de & G. Sanchez-Vioque, R. & Santana Meridas, O. 2015. Identification of a hybrid species of sage (Salvia officinalis L. × S. lavandulifolia subsp. lavandulifolia) through the study of the essential oil. J. Essential Oil Res. 27: 363-372. https://doi.org/10.1080/10412905.2015. 1031918
  • Heystek, A. & Pauw, A. 2014. Does competition for pollinators contribute to structuring Erica communities? J. Veg. Sci. 25: 648-656. https://doi.org/10.1111/jvs.12127
  • Hihara, S., Iwatsubo, Y. & Naruhashi, N. 2001. A new natural hybrid of Salvia (Lamiaceae) from Japan, Salvia × sakuensis. J. Phytogeogr. Taxon. 49: 163-170.
  • Hipp, A.L., Eaton, D.A.R., Cavender-Bares, J., Fitzek, E., Nipper, R. & Manos, P.S. 2014. A framework phylogeny of the American Oak clade based on sequenced RAD data. PLoS ONE 9: e93975. https://doi.org/10.1371/journal.pone.0093975
  • Hruby, K. 1962. Key to the supraspecific taxa of the genus Salvia. Preslia 34: 368-373.
  • Hu, G.X., Takano, A., Drew, B.T., Liu, E.D., Soltis, D.E., Soltis P.S., Peng, H. & Xiang, C.-L. 2018. Phylogeny and staminal evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia. Ann. Bot. (Oxford) 122: 649-668. https://doi.org/10.1093/aob/mcy104
  • Jenks, A.A., Walker, J.B. & Kim, S.C. 2013. Phylogeny of new world Salvia subgenus Calosphace (Lamiaceae) based on cpDNA (psbA-trnH) and nrDNA (ITS) sequence data. J. Pl. Res. 126: 483-496. https://doi.org/10.1007/s10265-012-0543-1
  • Jombart, T. & Ahmed, I. 2011. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27: 3070-3071. https://doi.org/10.1093/bioinformatics/btr521
  • Kajtoch, L., Cieslak, E., Varga, Z., Paul, W., Mazur, M.A., Sramko, G. & Kubisz, D. 2016. Phylogeographic patterns of steppe species in eastern central Europe: A review and the implications for conservation. Biodivers. & Conservation 25: 2309-2339. https://doi.org/10.1007/s10531-016-1065-2
  • Karbstein, K., Tomasello, S., Hodac ˇ, L., Dunkel, F.G., Daubert, M. & Horandl, E. 2020. Phylogenomics supported by geometric morphometrics reveals delimitation of sexual species within the polyploid apomictic Ranunculus auricomus complex (Ranunculaceae). Taxon 69: 1191-1220. https://doi.org/10. 1002/tax.12365
  • Kass, R.E. & Raftery, A.E. 1995. Bayes factors. J. Amer. Statist. Assoc. 90: 773-795. https://doi.org/10.1080/01621459.1995.104 76572
  • Kassambara, A. & Mundt, F. 2019. factoextra: Extract and visualize the results of multivariate data analyses. Software and manual available at https://cran.r-project.org/package=factoextra
  • Kaul, M.L.H. 1988. Male sterility in higher plants. Monographs on Theoretical and Applied Genetics 10. Berlin & Heidelberg: Springer. https://doi.org/10.1007/978-3-642-83139-3
  • Kerner von Marilaun, A. 1891. Pflanzenleben, vol. 2, Geschichte der Pflanzen. Leipzig & Wien: Bibliographisches Institut.
  • Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S. & Levine, J.M. 2015. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29: 592-599. https://doi.org/10.1111/1365-2435.12345
  • Kriebel, R., Drew, B.T., Drummond, C.P., Gonzalez-Gallegos, J.G., Celep, F. & Mahdjoub, M.M., Rose, J.P., Xiang, C.L., Hu, G.-X., Walker, J.B., Lemmon, E.M., Lemmon, A.R. & Sytsma, K.J. 2019. Tracking temporal shifts in area, biomes, and pollinators in the radiation of Salvia (sages) across continents: Leveraging anchored hybrid enrichment and targeted sequence data. Amer. J. Bot. 106: 573-597. https://doi.org/10.1002/ajb2. 1268
  • Kriebel, R., Drew, B., Gonzalez-Gallegos, J.G., Celep, F., Heeg, L., Mahdjoub, M.M. & Sytsma, K.J. 2020. Pollinator shifts, contingent evolution, and evolutionary constraint drive floral disparity in Salvia (Lamiaceae): Evidence from morphometrics and phylogenetic comparative methods. Evolution (Lancaster) 74: 1335- 1355. https://doi.org/10.1111/evo.14030
  • Kriebel, R., Drew, B.T., Gonzalez-Gallegos, J.G., Celep, F., Antar, G. M., Pastore, J.F.B., Uria, R. & Sytsma, K.J. 2021. Stigma shape shifting in sages (Salvia: Lamiaceae): Hummingbirds guided the evolution of New World floral features. Bot. J. Linn. Soc. 199: 428-448. https://doi.org/10.1093/botlinnean/boab096
  • Lavrenko, E.M., Karamysheva, Z.V. & Nikulina, R.I. 1991. Stepi Evrazii [Steppes of Eurasia]. Leningrad: Nauka.
  • Le, S., Josse, J. & Husson, F. 2008. FactoMineR: An R package for multivariate analysis. J. Statist. Software 25: 1-18. https://doi. org/10.18637/jss.v025.i01
  • Leache, A.D. & Oaks, J.R. 2017. The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Annual Rev. Ecol. Evol. Syst. 48: 69-84. https://doi.org/10.1146/annurev-ecolsys-110316-022645
  • Leache, A.D., Fujita, M.K., Minin, V.N. & Bouckaert, R.R. 2014. Species delimitation using genome-wide SNP data. Syst. Biol. 63: 534-542. https://doi.org/10.1093/sysbio/syu018
  • Leitch, I.J., Johnston, E., Pellicer, J., Hidalgo, O. & Bennett, M.D. 2019. Plant DNA C-values database, release 7.1, Apr. 2019. https://cvalues.science.kew.org/ (accessed 5 May 2019).
  • Lemmon, E.M. & Lemmon, A.R. 2013. High-throughput genomic data in systematics and phylogenetics. Annual Rev. Ecol. Evol. Syst. 44: 99-121. https://doi.org/10.1146/annurev-ecolsys-110512-135822
  • Li, H. & Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  • Li, Q.Q., Li, M.H., Yuan, Q.J., Cui, Z.H., Huang, L.Q. & Xiao, P.G. 2013. Phylogenetic relationships of Salvia (Lamiaceae) in China: Evidence from DNA sequence datasets. J. Syst. Evol. 51: 184-195. https://doi.org/10.1111/j.1759-6831.2012.00232.x
  • Lindner, L., Gozhik, P., Marciniak, B., Marks, L. & Yelovicheva, Y. 2004. Main climatic changes in the Quaternary of Poland, Belarus and Ukraine. Geol. Quart. 48: 97-114.
  • Magyari, E.K., Chapman, J.C., Passmore, D.G., Allen, J.R.M., Huntley, J.P. & Huntley, B. 2010. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 37: 915-935. https://doi.org/10.1111/j.1365-2699.2009.02261.x
  • Markova, A.K. 2000. The Mikulino (= Eemian) mammal faunas of the Russian plain and Crimea. Netherlands J. Geosci. 79: 293-301. https://doi.org/10.1017/S0016774600021776
  • Martinez-Ambriz, E., Fragoso-Martinez, I. & Martinez-Gordillo, M. 2019. A new species of Salvia from the Fulgentes clade (Lamiaceae), from Puebla, Mexico. Phytotaxa 409: 29-38. https:// doi.org/10.11646/phytotaxa.409.1.4
  • Martinez-Gordillo, M., Fragoso-Martinez, I. & Salas-Morales, S. H. 2016. Salvia robertoana (Lamiaceae), a new species from Oaxaca, Mexico. Phytotaxa 269: 271-278. https://doi.org/10.11646/ phytotaxa.269.4.2
  • McCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C. & Brumfield, R.T. 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Molec. Phylogen. Evol. 66: 526-538. https://doi.org/10.1016/j.ympev.2011.12.007
  • Menithkiy, Y. 1987. Salvia. Pp. 124-125 in: Takhtadjan, A.L. (ed.), Flora Armenii [Flora of Armenia], vol. 8. Yerevan: Izdatel' stvo Akademii Nauk Armianskoi SSR.
  • Meusel, H. & Jager, E. 1992. Vergleichende Chorologie der zentraleuropaischen Flora, vol. 3. Jena: Fischer.
  • MEWRB [Ministry of Environment and Water of Republic of Bulgaria] 2011-2013. Kartirane i opredelyane na prirodozashtitnoto sastoyanie na prirodni mestoobitaniya i vidove - faza I [Mapping and Determining the Nature Conservation Status of Natural Habitats and Species - Phase I]. http://natura2000.moew.govern ment.bg/Home/ProtectedSite?code=BG0000233&siteType=Habit atDirective
  • Miller, M.R., Dunham, J.P., Amores, A., Cresko, W.A. & Johnson, E.A. 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17: 240-248. https://doi. org/10.1101/gr.5681207
  • Muchhala, N. & Potts, M.D. 2007. Character displacement among batpollinated flowers of the genus Burmeistera: Analysis of mechanism, process and pattern. Proc. Roy. Soc. London, Ser. B., Biol. Sci. 274: 2731-2737. https://doi.org/10.1098/rspb.2007.0670
  • Nachychko, V.O. & Sosnovsky, Y.V. 2020. On the Romanian endemic species of Salvia (Lamiaceae) and its natural hybrids: Nomenclatural and taxonomic aspects. Phytotaxa 434: 270-280. https://doi. org/10.11646/phytotaxa.434.3.5
  • Neem Community Members 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493: 489-494. https:// doi.org/10.1038/nature11789
  • Norton, N.A., Fernando, M.T.R., Herlihy, C.R. & Busch, J.W. 2015. Reproductive character displacement shapes a spatially structured petal color polymorphism in Leavenworthia stylosa. Evolution (Lancaster) 69: 1191-1207. https://doi.org/10.1111/evo.12659
  • Nyarady, E.G. 1942. Uj novenyek a Delkeleti-Karpatok es a Feketetenger videkenek florajahoz. Acta Univ. Szeged., Sect. Sci. Nat., Pars Bot. 1: 31-45.
  • Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D' amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. & Kassem, K.R. 2001. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51: 933-938. https://doi.org/10.1641/0006-3568 (2001)051[0933:TEOTWA]2.0.CO;2
  • Pante, E., Abdelkrim, J., Viricel, A., Gey, D., France, S.C., Boisselier, M.C. & Samadi, S. 2015. Use of RAD sequencing for delimiting species. Heredity 114: 450-459. https://doi.org/ 10.1038/hdy.2014.105
  • Paun, O., Turner, B., Trucchi, E., Munzinger, J., Chase, M.W. & Samuel, R. 2016. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 65: 212-227. https://doi.org/10.1093/ sysbio/syv076
  • Pauw, A. 2006. Floral syndromes accurately predict pollination by a specialized oil-collecting bee (Rediviva peringueyi, Melittidae) in a guild of South African orchids (Coryciinae). Amer. J. Bot. 93: 917-926. https://doi.org/10.3732/ajb.93.6.917
  • Pinheiro, J., Bates, D. & R Core Team 2021. nlme: Linear and nonlinear mixed effects models. R Package. Version 3.1-152. Software and manual available at https://cran.r-project.org/package= nlme.
  • Pobedimova, Y.G. 1954. Salvia. Pp. 178-260 in: Komarov, V.L. (ed.), Flora SSSR [Flora of the U.S.S.R.], vol. 21. Moscow & Leningrad: Izdatel' stvo Akademii Nauk SSSR.
  • Puritz, J.B., Matz, M.V., Toonen, R.J., Weber, J.N., Bolnick, D.I. & Bird, C.E. 2014. Demystifying the RAD fad. Molec. Ecol. 23: 5937-5942. https://doi.org/10.1111/mec.12965
  • R Core Team 2019. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Rambaut, A. & Drummond, A. 2013. Tracer, version 1.6. Software distributed by the author. University of Edinburgh. https://github. com/beast-dev/tracer/releases/tag/v1.6
  • Rannala, B. & Yang, Z. 2008. Phylogenetic inference using whole genomes. Annual Rev. Genomics Human Genet. 9: 217-231. https:// doi.org/10.1146/annurev.genom.9.081307.164407
  • Reith, M., Baumann, G., Classen-Bockhoff, R. & Speck, T. 2007. New insights into the functional morphology of the lever mechanism of Salvia pratensis (Lamiaceae). Ann. Bot. (Oxford) 100: 393-400. https://doi.org/10.1093/aob/mcm031
  • Reitzel, A.M., Herrera, S., Layden, M.J., Martindale, M.Q. & Shank, T.M. 2013. Going where traditional markers have not gone before: Utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Molec. Ecol. 22: 2953-2970. https://doi.org/10.1111/mec.12228
  • Ren, M. & Tang, J. 2010. Anther fusion enhances pollen removal in Campsis grandiflora, a hermaphroditic flower with didynamous stamens. Int. J. Pl. Sci. 171: 275-282. https://doi.org/10.1086/ 650157
  • Rivera-Colon, A.G., Rochette, N.C. & Catchen, J.M. 2021. Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data. Molec. Ecol. Resources 21: 363-378. https://doi.org/10.1111/1755-0998.13163
  • Rochette, N.C., Rivera-Colon, A.G. & Catchen, J.M. 2019. Stacks2: Analytical methods for paired-end sequencing improve RADseqbased population genomics. Molec. Ecol. 28: 4737-4754. https:// doi.org/10.1111/mec.15253
  • Rose, J.P., Kriebel, R., Kahan, L., DiNicola, A., Gonzalez-Gallegos, J.G., Celep, F., Lemmon, E.M., Lemmon, A.R., Sytsma, K.J. & Drew, B.T. 2021. Sage insights into the phylogeny of Salvia: Dealing with sources of discordance within and across genomes. Frontiers Pl. Sci. (Online journal) 12: 767478. https://doi.org/10.3389/fpls.2021.767478
  • Rummel, J.D. & Roughgarden, J. 1985. A theory of faunal buildup for competition communities. Evolution 39: 1009-1033. https:// doi.org/10.1111/j.1558-5646.1985.tb00444.x
  • Schemske, D.W. 1981. Floral convergence and pollinator sharing in two bee-pollinated tropical herbs. Ecology 62: 946-954. https:// doi.org/10.2307/1936993
  • Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature, Meth. 9(7): 671-675. https://doi.org/10.1038/nmeth.2089
  • Sersic, A. 2004. Pollination biology in the genus Calceolaria L. (Calceolariaceae). Stapfia 82: 1-121.
  • Sramko, G., Paun, O., Brandrud, M.K., Laczko, L., Molnar, A. & Bateman, R.M. 2019. Iterative allogamy-autogamy transitions drive actual and incipient speciation during the ongoing evolutionary radiation within the orchid genus Epipactis (Orchidaceae). Ann. Bot. (Oxford) 124: 481-497. https://doi.org/10.1093/aob/ mcz103
  • Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690. https://doi.org/10.1093/ bioinformatics/btl446
  • Stange, M., Sanchez-Villagra, M.R., Salzburger, W. & Matschiner, M. 2018. Bayesian divergence-time estimation with genome-wide single-nucleotide polymorphism data of sea catfishes (Ariidae) supports Miocene closure of the Panamanian Isthmus. Syst. Biol. 67: 681-699. https://doi.org/10.1093/sysbio/syy006
  • Straw, R.M. 1956. Floral isolation in Penstemon. Amer. Naturalist 90: 47-53. https://doi.org/10.1086/281906
  • Strong, D.R., Szyska, L.A. & Simberloff, D.S. 1979. Test of community-wide character displacement against null hypotheses. Evolution (Lancaster) 33: 897-913. https://doi.org/10.1111/j. 1558-5646.1979.tb04743.x
  • Takano, A. & Okada, H. 2011. Phylogenetic relationships among subgenera, species and varieties of Japanese Salvia L.(Lamiaceae). J. Pl. Res. 124: 245-252. https://doi.org/10.1007/s10265-010-0367-9
  • Thimm, S.G. 2008. Pollen-placement and pollen-portioning in diverse Salvia-species. Ph.D. thesis. Johannes Gutenberg-Universitat Mainz, Germany. http://doi.org/10.25358/openscience-2222
  • Timar-Gabor, A., Vandenberghe, D.A.G., Vasiliniuc, S., Panaoitu, C.E., Panaiotu, C.G., Dimofte, D. & Cosma, C. 2011. Optical dating of Romanian loess: A comparison between silt-sized and sand-sized quartz. Quatern. Int. 240: 62-70. https://doi.org/10. 1016/j.quaint.2010.10.007
  • Tomescu, A.M.F. 2000. Evaluation of Holocene pollen records from the Romanian Plain. Rev. Palaeobot. Palynol. 109: 219-233. https://doi.org/10.1016/S0034-6667(99)00056-1
  • Trapp, A. 1956a. Entwicklungsgeschichtliche Untersuchungen uber die Antherengestaltung sympetaler Bluten. Beitr. Biol. Pflanzen 32: 279-312.
  • Trapp, A. 1956b. Zur Morphologie und Entwicklungsgeschichte der Staubblatter sympetaler Bluten. Jena: Fischer.
  • Troll, W. 1929. Roscoea purpurea SM., eine Zingiberacee mit Hebelmechanismus in den Bluten; Mit Bemerkungen uber die Entfaltungsbewegungen der fertilen Staubblatter von Salvia. Planta 7: 1-28. https://doi.org/10.1007/BF01908933
  • Tychonievich, J. & Warner, R.M. 2011. Interspecific crossability of selected Salvia species and potential use for crop improvement. J. Amer. Soc. Hort. Sci. 136: 41-47. https://doi.org/10.21273/ JASHS.136.1.41
  • Van Andel, T. & Tzedakis, P.C. 1996. Palaeolithic landscapes of Europe and environs, 150,000-25,000 years ago: An overview. Quatern. Sci. Rev. 15: 481-500. https://doi.org/10.1016/0277-3791 (96)00028-5
  • Van der Niet, T., Peakall, R. & Johnson, S.D. 2014. Pollinator-driven ecological speciation in plants: New evidence and future perspectives. Ann. Bot. (Oxford) 113: 199-212. https://doi.org/10.1093/ aob/mct290
  • Walker, J.B. & Sytsma, K.J. 2007. Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Ann. Bot. (Oxford) 100: 375-391. https://doi.org/10.1093/aob/mcl176
  • Walker, J.B., Sytsma, K.J., Treutlein, J. & Wink, M. 2004. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Amer. J. Bot. 91: 1115-1125. https://doi.org/10.3732/ ajb.91.7.1115
  • Walker, J.B., Drew, B.T. & Sytsma, K.J. 2015. Unravelling species relationships and diversification within the iconic California Floristic Province sages (Salvia subgenus Audibertia, Lamiaceae). Syst. Bot. 40: 826-844. https://doi.org/10.1600/036364415X689285
  • Waser, N.M. 1983. Competition for pollination and floral character differences among sympatric plant species: A review of evidence. Pp. 277-293 in: Jones, C.E. & Little, R.J. (eds.), Handbook of experimental pollination biology. New York: Scientific and Academic Editions.
  • Webb, A.A. & Carlquist, S. 1964. Leaf anatomy as an indicator of Salvia apiana -mellifera introgression. Aliso 5: 437-449. https:// doi.org/10.5642/aliso.19640504.04
  • Wei, Y.K., Pendry, C.A., Zhang, D.G. & Huang, Y.B. 2019. Salvia daiguii (Lamiaceae): A new species from west Hunan, China. Edinburgh J. Bot. 76: 359-368. https://doi.org/10.1017/S09604 2861900009X
  • Wester, P. & Classen-Bockhoff, R. 2002. Salvia haenkei Benth. and S. orbignaei Benth. - Two ornithophilous species from Bolivia and their hybrids. Poster presented at Botanikertagung, 22-27 September 2002, Freiburg, Germany.
  • Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer. https://doi.org/10.1007/978-3-319-24277-4
  • Will, M. & Classen-Bockhoff, R. 2014. Why Africa matters: Evolution of Old World Salvia (Lamiaceae) in Africa. Ann. Bot. (Oxford) 114: 61-83. https://doi.org/10.1093/aob/mcu081
  • Will, M. & Classen-Bockhoff, R. 2017. Time to split Salvia s.l. (Lamiaceae) - New insights from Old World Salvia phylogeny. Molec. Phylogen. Evol. 109: 33-58. https://doi.org/10.1016/j. ympev.2016.12.041
  • Zhang, B. & Classen-Bockhoff, R. 2019. Sex-differential reproduction success and selection on floral traits in gynodioecious Salvia pratensis. B. M. C. Pl. Biol. 19: 375. https://doi.org/10.1186/s12870- 019-1972-y