Published October 31, 2022
| Version v1
Journal article
Open
Unravelling the species diversity, phylogeny and biogeography of the mycoheterotrophic Voyrieae (Gentianaceae) and the description of a new species
Creators
- 1. Izai A.B.S. Kikuchi, & Olivier Lachenaud, & Hiltje Maas-van de Kamer & & Vincent S.F.T. Merckx & Naturalis Biodiversity Center, Darwinweg & rte de Paramana, 97351 Matoury, French Guiana
- 2. Julian Perdomo, & 2333CR Leiden, Netherlands & Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium & Julian Perdomo, & Herbarium et Bibliothèque de Botanique africaine, CP 265, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
- 3. Guillaume Léotard, & Herbario Luis Sigifredo Espinal-Tascón, Departamento de Biología, Universidad del Valle, Calle
- 4. PK
- 5. Izai A.B.S. Kikuchi, & Olivier Lachenaud, & Hiltje Maas-van de Kamer & & Vincent S.F.T. Merckx & Naturalis Biodiversity Center, Darwinweg & rte de Paramana, 97351 Matoury, French Guiana & Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands
Description
Gomes, Sofia I.F., Kikuchi, Izai A.B.S., Lachenaud, Olivier, Perdomo, Julian, Léotard, Guillaume, Maas, Paul J.M., Kamer, Hiltje Maas-van de, Merckx, Vincent S.F.T. (2022): Unravelling the species diversity, phylogeny and biogeography of the mycoheterotrophic Voyrieae (Gentianaceae) and the description of a new species. TAXON 71 (5): 1013-1024, DOI: 10.1002/tax.12765, URL: http://dx.doi.org/10.1002/tax.12765
Files
source.pdf
Files
(1.1 MB)
Name | Size | Download all |
---|---|---|
md5:22e6854fa27388bd6cb2fedf669ea953
|
1.1 MB | Preview Download |
Linked records
Additional details
Identifiers
- URL
- https://www.checklistbank.org/dataset/305370
- LSID
- urn:lsid:plazi.org:pub:FFE6854FA273FFBDFFB2FFDFFF9EA953
- URL
- http://publication.plazi.org/id/FFE6854FA273FFBDFFB2FFDFFF9EA953
References
- Albert, V. & Struwe, L. 1997. Phylogeny and classification of Voyria (saprophytic Gentianaceae). Brittonia 49: 466-479. https://doi. org/10.2307/2807736
- Antonelli, A., Zizka, A., Carvalho, F.A., Scharn, R., Bacon, C.D., Silvestro, D. & Condamine, F.L. 2018. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. U.S.A. 115: 6034-6039. https://doi.org/10.1073/pnas.1713819115
- Bacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P. & Antonelli A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl. Acad. Sci. U.S.A. 112: 6110-6115. https://doi.org/10. 1073/pnas.1423853112
- Bidartondo, M.I. 2005. The evolutionary ecology of myco-heterotrophy. New Phytol. 167: 335-352. https://doi.org/10.1111/j.1469- 8137.2005.01429.x
- Bidartondo, M.I., Redecker, D., Hijri, I., Wiemken, A., Bruns, T.D., Dominguez, L., Sersic, A., Leake, J.R. & Read, D.J. 2002. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419: 389-392. https://doi.org/10.1038/nature01054
- Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xi, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computat. Biol. 10: e1003537. https://doi.org/10. 1371/journal.pcbi.1003537
- Couvreur, T.L., Forest, F. & Baker, W.J. 2011. Origin and global diversification patterns of tropical rain forests: Inferences from a complete genus-level phylogeny of palms. B. M. C. Biol. 9: 44. https://doi.org/10.1186/1741-7007-9-44
- Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature, Meth. 9: 772. https://doi.org/10.1038/nmeth.2109
- Davis, C.C. & Wurdack, K.J. 2004. Host-to-parasite gene transfer in flowering plants: Phylogenetic evidence from Malpighiales. Science 305: 676-678. https://doi.org/10.1126/science.1100671
- De Queiroz K. 2007. Species concepts and species delimitation. Syst. Biol. 56: 879-886. https://doi.org/10.1080/10635150701701083
- Drummond, A.J. & Suchard, M.A. 2010. Bayesian random local clocks, or one rate to rule them all. B. M. C. Biol. 8: 114. https:// doi.org/10.1186/1741-7007-8-114
- Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec. Biol. Evol. 29: 1969-1973. https://doi.org/10.1093/molbev/mss075
- Eiserhardt, W.L., Couvreur, T.L.P. & Baker, W.J. 2017. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. New Phytol. 214: 1408-1422. https://doi. org/10.1111/nph.14516
- Eriksson, O. & Kainulainen, K. 2011. The evolutionary ecology of dust seeds. Perspect. Pl. Ecol. Evol. Syst. 13: 73-87. https://doi. org/10.1016/j.ppees.2011.02.002
- Eyre-Walker, A. & Gaut, B.G. 1997. Correlated rates of synonymous site evolution across plant genomes. Molec. Biol. Evol. 14: 455- 460. https://doi.org/10.1093/oxfordjournals.molbev.a025781
- Ezard, T., Fujisawa, T. & Barraclough, T. 2009. splits: SPecies' LImits by Threshold Statistics. R package version 1.0-11/r29. Available from https://R-Forge.R-project.org/projects/splits/
- Favre, A., Yuan, Y.-M., Kupfer, P. & Alvarez, N. 2010. Phylogeny of subtribe Gentianinae (Gentianaceae): Biogeographic inferences despite limitations in temporal calibration points. Taxon 59: 1701- 1711. https://doi.org/10.1002/tax.596005
- Favre, A., Michalak, I., Chen, C.-H., Wang, J.-C., Pringle, J.S., Matuszak, S., Sun, H., Yuan, Y.-M., Struwe, L. & Muellner-Riehl, A.N. 2016. Out-of-Tibet: The spatio-temporal evolution of Gentiana (Gentianaceae). J. Biogeogr. 43: 1967-1978. https:// doi.org/10.1111/jbi.12840
- Gilg, E. 1895. Gentianaceae. Pp. 50-108 in: Engler, A. & Prantl, K. (eds.), Die naturlichen Pflanzenfamilien, 1st ed., IV(2). Leipzig:Engelmann.
- Gomes, S.I.F., Van Bodegom, P.M., Merckx, V.S.F.T. & Soudzilovskaia, N.A. 2019a. Global distribution patterns of mycoheterotrophy. Global Ecol. Biogeogr. 95: 1133-1145. https://doi. org/10.1111/geb.12920
- Gomes, S.I.F., Fortuna, M.A., Bascompte, J. & Merckx, V.S.F.T. 2019b. Plant cheaters preferentially target arbuscular mycorrhizal fungi that are highly connected to mutualistic plants. biorxiv.org. https://doi.org/10.1101/867259
- Gomes, S.I.F., Van Bodegom, P.M., Merckx, V.S.F.T. & Soudzilovskaia, N.A. 2019c. Environmental drivers for cheaters of arbuscular mycorrhizal symbiosis in tropical rainforests. New Phytol. 223: 1575-1583. https://doi.org/10.1111/nph.15876
- Graham, A. 1984. Lisianthius pollen from the Eocene of Panama. Ann. Missouri Bot. Gard. 71: 987-993. https://doi.org/10.2307/2399236
- Graham, S.W., Lam, V.K.Y. & Merckx, V.S.F.T. 2017. Plastomes on the edge: The evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol. 214: 48-55. https://doi.org/10.1111/nph.14398
- Grisebach, A.H.R. 1845. Gentianaceae. Pp. 38-141 in: Candolle, A. de (ed.), Prodromus systematis naturalis regni vegetabilis, vol. 9. Parisiis [Paris]: sumptibus Fortin, Masson et Sociorum. https://doi.org/10.5962/bhl.title.286
- Guimaraes, E.F., Silva, N.G. & Mendes TA. 2018. Flora das cangas da Serra dos Carajas, Para, Brasil: Gentianaceae. Rodriguesia 69: 1125-1133. https://doi.org/10.1590/2175-7860201869320
- Hoorn, C., Wesselingh, F.P., Ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartin, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Sarkinen, T. & Antonelli, A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927-931. https://doi.org/10.1126/science.1194585
- Janssens, S.B., Knox, E.B., Huysmans, S., Smets, E.F. & Merckx, V.S.F.T. 2009. Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: Result of a global climate change. Molec. Phylogen. Evol. 52: 806-824. https://doi.org/10.1016/j. ympev.2009.04.013
- Katoh, K., Misawa, K., Kuna, K. & Miyata, T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 30: 3059-3066. https://doi. org/10.1093/nar/gkf436
- Li, H.-T., Yi, T.-S., Gao, L.-M., Ma, P.-F., Zhang, T., Yang, J.-B., Gitzendanner, M.A., Fritsch, P.W., Cai, J., Luo, Y., Wang, H., Van der Bank, M., Zhang, S.-D., Wang, Q.-F., Wang, J., Zhang, Z.-R., Fu, C.-N., Yang, J., Hollingsworth, P.-M., Chase, M.W., Soltis, D.E., Soltis, P.S. & Li, D.Z. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nature, Plants 5: 461-470. https://doi.org/10.1038/s41477-019-0421-0
- Luo, A., Ling, C., Ho, S.Y.W. & Zhu, C.-D. 2018. Comparison of methods for molecular species delimitation across a range of speciation scenarios. Syst. Biol. 67: 830-846. https://doi.org/10.1093/ sysbio/syy011
- Maas, P.J.M. & Ruyters, P. 1986. Voyria and Voyriella (saprophytic Gentianaceae). Flora Neotropica Monograph 41. Bronx, NY: New York Botanical Garden Press. https://www.jstor.org/stable/ 4393786
- Mai, D.H. & Walther, H. 1988. Die pliozanen Floren von Thuringen, Deutsche Demokratische Republik. Quartarpalaontologie 7: 55-297.
- Matzke, N.J. 2013. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers Biogeogr. 5: 242-248. https://doi.org/10.21425/F5FBG19694
- Mayr, E. 1982. The growth of biological thought: Diversity, evolution, and inheritance. Cambridge, MA: Belknap Press of Harvard University Press.
- Mennes, C.B., Smets, E.F., Moses, S.N. & Merckx, V.S.F.T. 2013. New insights in the long-debated evolutionary history of Triuridaceae (Pandanales). Molec. Phylogen. Evol. 69: 994-1004. https:// doi.org/10.1016/j.ympev.2013.05.031
- Merckx, V.S.F.T. 2013. Mycoheterotrophy: The biology of plants living on fungi. New York: Springer. https://doi.org/10.1007/978-1- 4614-5209-6
- Merckx, V. & Freudenstein, J.V. 2010. Evolution of mycoheterotrophy in plants: A phylogenetic perspective. New Phytol. 185: 605-609. https://doi.org/10.1111/j.1469-8137.2009.03155.x
- Merckx, V., Chatrou, L.W., Lemaire, B., Sainge, M.N., Huysmans, S. & Smets, E.F. 2008. Diversification of myco-heterotrophic angiosperms: Evidence from Burmanniaceae. B. M. C. Evol. Biol. 8: 178. https://doi.org/10.1186/1471-2148-8-178
- Merckx, V., Stockel, M., Fleischmann, A., Bruns, T.D. & Gebauer, G. 2010. 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol. 188: 590-596. https://doi.org/10.1111/j.1469-8137.2010.03365.x
- Merckx, V.S.F.T., Janssens, S.B., Hynson, N.A., Specht, C.D., Bruns, T.D. & Smets, E.F. 2012. Mycoheterotrophic interactions are not limited to a narrow phylogenetic range of arbuscular mycorrhizal fungi. Molec. Ecol. 21: 1524-1532. https://doi.org/10. 1111/j.1365-294X.2012.05472.x
- Merckx, V.S.F.T., Kissling, J., Hentrich, H., Janssens, S.B., Mennes, C.B., Specht, C.D. & Smets, E.F. 2013. Phylogenetic relationships of the mycoheterotrophic genus Voyria and the implications for the biogeographic history of Gentianaceae. Amer. J. Bot. 100: 712-721. https://doi.org/10.3732/ajb.1200330
- Miquel, F.A.W. 1851 ("1850"). Gentianeae parasiticae. Pp. 146-151 in: Stirpes surinamense selectae. Lugduni Batavorum [Leiden]: apud Arnz. & Soc. https://doi.org/10.5962/bhl.title.77484
- Morley, R.J. 2000. Origin and evolution of tropical rain forests. New York: Wiley.
- Pirie, M.D., Litsios, G., Bellstedt, D.U., Salamin, N. & Kissling, J. 2015. Back to Gondwanaland: Can ancient vicariance explain (some) Indian Ocean disjunct plant distributions? Biol. Lett. 11(6): 20150086. https://doi.org/10.1098/rsbl.2015.0086
- Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler A.P. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55: 595-609. https://doi.org/10. 1080/10635150600852011
- Powell, J.R., Monaghan, M.T., Opik, M. & Rillig, M.C. 2011. Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories. Molec. Ecol. 20: 655-666. https://doi.org/10.1111/j.1365-294X.2010.04964.x
- Primack, R.B. & Corlett, R.T. 2005. Tropical rainforests: An ecological and biogeographical comparison. Malden: Blackwell.
- Progel, A. 1865. Gentianaceae. Pp. 197-248 in: Martius, C.F.P. von (ed.), Flora Brasiliensis, vol. 6(1). Monachii [Munich]; Lipsiae [Leipzig]: apud Frid. Fleischer. https://doi.org/10.5962/bhl.title.454
- Rambaut, A. & Drummond, A.J. 2007. Tracer, version 1.4. http:// beast.bio.ed.ac.uk/Tracer
- Raynal, A. 1967. Etude ´critique des genres Voyria et Leiphaimos (Gentianaceae) et revision des Voyria d' Afrique. Adansonia 7: 53-71.
- Ree, R.H. & Smith, S.A. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57: 4-14. https://doi.org/10.1080/106351 50701883881
- Sheldrake, M., Rosenstock, N.P., Revillini, D., Olsson, P.A., Wright, S.J. & Turner, B.L. 2017. A phosphorus threshold for mycoheterotrophic plants in tropical forests. Proc. Roy. Soc. London., Ser. B, Biol. Sci. 284: 20162093. https://doi.org/10. 1098/rspb.2016.2093
- Shepeleva, E.A., Schelkunov, M.I., Hrones, M., Sochor, M., Dancˇak, M., Merckx, V.S.F.T., Kikuchi, I.A., Chantanaorrapint, S., Suetsugu, K., Tsukaya, H., Mar, S.S., Luu, H.T., Li, H.-Q., Logacheva, M.D. & Nuraliev, M.S. 2020. Phylogenetics of the mycoheterotrophic genus Thismia (Thismiaceae: Dioscoreales) with a focus on the Old World taxa: Delineation of novel natural groups and insights into the evolution of morphological traits. Bot. J. Linn. Soc. 193: 287-315. https://doi.org/10.1093/botlinnean/ boaa017
- Simon, M.F., Grether, R., de Queiroz, L.P., Skema, C., Pennington, R.T. & Hughes, C.E. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. U.S.A. 106: 20359-20364. https://doi.org/10.1073/pnas.0903410106
- Smith, S.A. & O' Meara, B.S. 2012. Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689-2690. https://doi.org/10.1093/bioinformatics/bts492
- Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
- Struwe, L., Kadereit, J.W., Klackenberg, J., Nilson, S., Thiv, M., von Hagen, K.B. & Albert, V.A. 2002. Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. Pp. 21-301 in: Struwe, L. & Albert, V.A. (eds.), Gentianaceae: Systematics and natural history. Cambridge, U.K.: Cambridge University Press. https://doi. org/10.1017/CBO9780511541865.003
- Struwe, L., Albert, V.A., Fernanda Calio, M., Frasier, C., Lepis, K.B., Mathews, K.G. & Grant, J.R. 2009. Evolutionary patterns in neotropical Helieae (Gentianaceae): Evidence from morphology, chloroplast and nuclear DNA sequences. Taxon 58: 479- 499. https://doi.org/10.1002/tax.582013
- Ter Steege, H., Mota de Oliveira, S., Pitman, N.C.A., Sabatier, D., Antonelli, A., Guevara Andino, J.E., Aymard, G.A. & Salomao, R.P. 2019. Towards a dynamic list of Amazonian tree species. Sci. Rep. 9: 3501. https://doi.org/10.1038/s41598-019- 40101-y
- Villaverde, T., Pokorny, L., Olsson, S., Rincon-Barrado, M., Johnson, M.G., Gardner, E.M., Wickett, N.J., Molero, J., Riina, R. & Sanmartin, I. 2018. Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytol. 220: 636-650. https://doi.org/10.1111/nph.15312
- White, T.J., Bruns, T., Lee, S. & Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 in: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (eds.), PCR protocols: A guide to methods and applications. New York: Academic Press. https://doi.org/10.1016/ B978-0-12-372180-8.50042-1
- Yuan, Y.M., Wohlhauser, S., Moller, M., Klackenberg, J., Callmander, M.W. & Kupfer, P. 2005. Phylogeny and biogeography of Exacum (Gentianaceae): A disjunctive distribution in the Indian Ocean basin resulted from long distance dispersal and extensive radiation. Syst. Biol. 54: 21-34. https://doi.org/10.1080/ 10635150590905867