Published August 21, 2020 | Version v1
Journal article Open

Pennaraptoran Theropod Dinosaurs Past Progress And New Frontiers

  • 1. Vertebrate Palaeontology Laboratory Division of Earth and Planetary Science The University of Hong Kong, Hong Kong
  • 2. Key Laboratory of Vertebrate Evolution and Human Origins Institute of Vertebrate Paleontology & Paleoanthropology and CAS Center for Excellence in Life and Paleoenvironment, Beijing

Description

Pittman, Michael, Xu, Xing (2020): Pennaraptoran Theropod Dinosaurs Past Progress And New Frontiers. Bulletin of the American Museum of Natural History 2020 (440): 1-353, DOI: 10.1206/0003-0090.440.1.1, URL: https://doi.org/10.1206/0003-0090.440.1.1

Files

source.pdf

Files (47.6 MB)

Name Size Download all
md5:c390c6d21bcf744bfb45a84adc3f8362
47.6 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF90FFD2FFCF744BFB45A84ADC3F8362
URL
http://publication.plazi.org/id/FF90FFD2FFCF744BFB45A84ADC3F8362

References

  • Abbott, U.K., L.W. Taylor, and H. Abplanalp. 1959. Studies with talpid2, an embryonic lethal of the fowl. Journal of Heredity 50: 195-202.
  • Abzhanov, A., M. Protas, B.R. Grant, P.R. Grant, and C.J. Tabin. 2004. Bmp4 and morphological variation of beaks in Darwin's finches. Science 305: 1462- 1465.
  • Abzhanov, A., et al. 2006. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442: 563-567.
  • Bailleul, A.M., Z.H. Li, J.M.K. O'Connor, and Z.H. Zhou. 2019. Origin of the avian predentary and evidence of a unique form of cranial kinesis in cretaceous ornithuromorphs. Proceedings of the National Academy of Sciences of the United States of America 116: 24696-24706.
  • Balanoff, A.M., X. Xu, Y. Kobayashi, Y. Matsufune, and M.A. Norell. 2009. Cranial osteology of the theropod dinosaur Incisivosaurus gauthieri (Theropoda: Oviraptorosauria). American Museum Novitates 3651: 1-35.
  • Bell, P.R., P.J. Currie, and D.A. Russell. 2015. Large caenagnathids (Dinosauria, Oviraptorosauria) from the uppermost Cretaceous of Western Canada. Cretaceous Research 52: 101-107.
  • Berkovitz, B.K.B., and R.P. Shellis. 2016. The teeth of non-mammalian vertebrates. London: Academic Press.
  • Berkovitz, B.K.B., and R.P. Shellis. 2018. The teeth of mammalian vertebrates. London: Academic Press.
  • Bhullar, B.A.S., et al. 2012. Birds have paedomorphic dinosaur skulls. Nature 487: 223-226.
  • Bhullar, B.A.S., et al. 2015. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution 69: 1665-1677.
  • Blanchard, E. 1860. Observations sur le systeme dentaire chez les oiseaux. Comptes Rendus de l'Academie des Sciences 50: 540-542.
  • Bolt, J.R., and R. Demar. 1975. An explanatory model of the evolution of multiple rows of teeth in Captorhinus aguti. Journal of Paleontology 49: 815-832.
  • Brink, K.S., T. Grieco, and J.M. Richman. 2018. The dynamics of tooth cycling in polyphyodont vertebrates. Journal of Vertebrate Paleontology, Program and Abstracts: 33.
  • Buchtova, M., et al. 2008. Initiation and patterning of the snake dentition are dependent on Sonic Hedgehog signaling. Developmental Biology 319: 132-145.
  • Buchtova, M., J. Stembirek, K. Glocova, E. Matalova, and A.S. Tucker. 2012. Early regression of the dental lamina underlies the development of diphyodont dentitions. Journal of Dental Research 91: 491-498.
  • Buchtova, M., O. Zahradnicek, S. Balkova, and A.S. Tucker. 2013. Odontogenesis in the Veiled Chameleon (Chamaeleo calyptratus). Archives of Oral Biology 58: 118-133.
  • Chen, Y.P., et al. 2000. Conservation of early odontogenic signaling pathways in Aves. Proceedings of the National Academy of Sciences of the United States of America 97: 10044-10049.
  • Chiappe, L.M., M.A. Norell, and J.M. Clark. 2001. A new skull of Gobipteryx minuta (Aves: Enantiornithes) from the Cretaceous of the Gobi Desert. American Museum Novitates 3346: 1-15.
  • Chiappe, L.M., et al. 2014. A new specimen of the Early Cretaceous bird Hongshanornis longicresta: Insights into the aerodynamics and diet of a basal ornithuromorph. PeerJ 2: e234.
  • Choiniere, J.N., C.A. Forster, and W.J. de Klerk. 2012. New information on Nqwebasaurus thwazi, a coelurosaurian theropod from the Early Cretaceous Kirkwood Formation in South Africa. Journal of African Earth Sciences 71-72: 1-17.
  • Cifelli, R.L., and C. de Muizon. 1998. Tooth eruption and replacement pattern in early marsupials. Comptes Rendus de l'Academie des Sciences (Series IIA) Earth and Planetary Science 326: 215-220.
  • Clark, J.M., T. Maryanska, and R. Barsbold. 2004. Therizinosauroidea. In D.B. Weishampel, P. Dodson, and H. Osmolska (editors), The Dinosauria: 151-164. Berkeley: University of California Press.
  • Cobourne, M.T., I. Miletich, and P.T. Sharpe. 2004. Restriction of sonic hedgehog signalling during early tooth development. Development 131: 2875- 2885.
  • Cooper, J.S., D.F.G. Poole, and R. Lawson. 1970. The dentition of agamid lizards with special reference to tooth replacement. Journal of Zoology 162: 85-98.
  • Cope, E.D. 1867. An account of the extinct reptiles which approached the birds. Proceedings of the Academy of Natural Sciences of Philadelphia 19: 234-235.
  • Currie, P.J., S.J. Godfrey, and L. Nessov. 1993. New caenagnathid (Dinosauria: Theropoda) specimens from the Upper Cretaceous of North America and Asia. Canadian Journal of Earth Sciences 30: 2255-2272.
  • Cuvier, G. 1821. Physiologie animale et anatomie. Analyse des Travaux de l'Academie Royale des Sciences, pendant l'annee 1821, partie physique: 32-42.
  • Dames, W. 1884. Uber Archaeopteryx. Palaeontologische Abhandlungen 2: 119-196.
  • Darwin, C. 1859. The origin of species by means of natural selection, 1st ed. London: John Murray.
  • Davit-Beal, T., A.S. Tucker, and J.-Y. Sire. 2009. Loss of teeth and enamel in tetrapods: Fossil record, genetic data and morphological adaptations. Journal of Anatomy 214: 477-501.
  • de Leon, L.F., E. Bermingham, J. Podos, and A.P. Hendry. 2010. Divergence with gene flow as facilitated by ecological differences: Within-island variation in Darwin's finches. Philosophical Transactions of the Royal Society B, Biological Sciences 365: 1041-1052.
  • Dilger, W.C. 1957. The loss of teeth in birds. Auk 74: 103-104.
  • Dosedelova, H., et al. 2015. Fate of the molar dental lamina in the monophyodont mouse. PLoS One 10: e0127543.
  • Dumont, M., et al. 2016. Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the "last" toothed birds. BMC Evolutionary Biology 16: 178.
  • Dvorak, L., and J.F. Fallon. 1991. Talpid2 mutant chick limb has anteroposterior polarity and altered patterns of programmed cell death. Anatomical Record 231: 251-260.
  • Edmund, A.G. 1960. Tooth replacement phenomena in the lower vertebrates. Royal Ontario Museum Life Sciences Contribution 52.
  • Edmund, A.G. 1962. Sequence and rate of tooth replacement in the Crocodilia. Royal Ontario Museum Life Sciences Contribution 56: 1-42.
  • Elzanowski, A. 1976. Palaeognathous bird from the Cretaceous of Central Asia. Nature 264: 51-53.
  • Elzanowski, A. 1977. Skulls of Gobipteryx (Aves) from the Upper Cretaceous of Mongolia. Palaeontologia Polonica 37: 153-166.
  • Elzanowski, A. 1981. Embryonic bird skeletons from the Late Cretaceous of Mongolia. Palaeontologia Polonica 42: 147-179.
  • Evans, J. 1865. On portions of a cranium and of a jaw, in the slab containing the fossil remains of Archaeopteryx. Natural History Review 5: 415-421.
  • Feduccia, A. 1999. The origin and evolution of birds, New Haven, CT: Yale University Press.
  • Field, D.J., et al. 2018. Early evolution of modern birds structured by global forest collapse at the end-cretaceous mass extinction. Current Biology 28: 1825- 1831.
  • Francis-West, P., R. Ladher, A. Barlow, and A. Graveson. 1998. Signalling interactions during facial development. Mechanisms of Development 75: 3-28.
  • Fraser, G.J., A. Graham, and M.M. Smith. 2006. Developmental and evolutionary origins of the vertebrate dentition: Molecular controls for spatio-temporal organisation of tooth sites in osteichthyans. Journal of Experimental Zoology B, Molecular and Developmental Evolution 306B: 183-203.
  • Fraser, G.J., et al. 2009. An ancient gene network is coopted for teeth on old and new jaws. PLoS Biology 7: e1000031.
  • Fraser, G.J., R. Britz, A. Hall, Z. Johanson, and M.M. Smith. 2012. Replacing the first-generation dentition in pufferfish with a unique beak. Proceedings of the National Academy of Sciences of the United States of America 109: 8179-8184.
  • Funston, G.F., and P.J. Currie. 2014. A previously undescribed caenagnathid mandible from the Late Campanian of Alberta, and insights into the diet of Chirostenotes pergracilis (Dinosauria: Oviraptorosauria). Canadian Journal of Earth Sciences 51: 156-165.
  • Funston, G.F. et al. 2020. Histology of caenagnathid (Theropoda, Oviraptorosauria) dentaries and implications for development, ontogenetic edentulism, and taxonomy. Anatomical Record 303: 918-934.
  • Gao, C.L., et al. 2012. A subadult specimen of the Early Cretaceous bird Sapeornis chaoyangensis and a taxonomic reassessment of sapeornithids. Journal of Vertebrate Paleontology 32: 1103-1112.
  • Gardiner, E.G. 1884. Beitrage zur Kenntniss des Epitrichiums und der Bildung des Vogelschnabels. Archiv fur Mikroskop. Anatomie 24: 289-338.
  • Gegenbaur, K. 1863. Vergleichend-anatomische Bemerkungen uber das Fussskelet der Vogel. Archiv fur Anatomie, Physiologie und Wissenschaftliche Medicin 1863: 450-472.
  • Genbrugge, A., et al. 2011. Ontogeny of the cranial skeleton in a Darwin's finch (Geospiza fortis). Journal of Anatomy 219: 115-131.
  • Gill, F.B. 2006. Ornithology, 3rd ed. New York: W. H. Freeman.
  • Green, H.L.H.H. 1937. The development and morphology of the teeth of Ornithorhynchus. Philosophical Transactions of the Royal Society of London B, Biological Sciences 228: 367-420.
  • Hanai, T., and T. Tsuihiji. 2019. Description of tooth ontogeny and replacement patterns in a juvenile Tarbosaurus bataar (Dinosauria: Theropoda) using CT-scan data. Anatomical Record 302: 1210-1225.
  • Harris, M.P., S.M. Hasso, M.W.J. Ferguson, and J.F. Fallon. 2006. The development of archosaurian first-generation teeth in a chicken mutant. Current Biology 16: 371-377.
  • Harrison, H.S. 1901 The development and succession of teeth in Hatteria punctata. Quarterly Journal of Microscopical Science 44: 161-219.
  • He, Y., P.J. Makovicky, X. Xu, and H. You. 2018. High-resolution computed tomographic analysis of tooth replacement pattern of the basal neoceratopsian Liaoceratops yanzigouensis informs ceratopsian dental evolution. Scientific Reports 8: 5870.
  • Heers, A.M., J.W. Rankin, and J.R. Hutchinson. 2018. Building a bird: Musculoskeletal modeling and simulation of wing-assisted incline running during avian ontogeny. Frontiers in Bioengineering and Biotechnology 6: 140.
  • Heilmann, G. 1927. The origin of birds, London: D. Appleton.
  • Helms, J.A., and R.A. Schneider. 2003. Cranial skeletal biology. Nature 423: 326-331.
  • Hieronymus, T.L., and L.M. Witmer. 2010. Homology and evolution of avian compound rhamphothecae. Auk 127: 590-604.
  • Howgate, M.E. 1984. The teeth of Archaeopteryx and a reinterpretation of the Eichstatt specimen. Zoological Journal of the Linnean Society 82: 654-660.
  • Hu, H., J.K. O'Connor, and Z.H. Zhou. 2015. A new species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China suggests a specialized scansorial habitat previously unknown in early birds. PLoS One 10: e0126791.
  • Hu, X., et al. 2012. Noggin is required for early development of murine upper incisors. Journal of Dental Research 91: 394-400.
  • Huxley, T.H. 1868. On the animals which are most nearly intermediate between birds and reptiles. Annals & Magazine of Natural History 2: 66-75.
  • Huxley, T.H. 1870. Further evidence of the affinity between the dinosaurian reptiles and birds. Quarterly Journal of the Geological Society 26: 12-31.
  • Huysseune, A. 2006. Formation of a successional dental lamina in the zebrafish (Danio rerio): support for a local control of replacement tooth initiation. International Journal of Developmental Biology 50: 637- 643.
  • Huysseune, A., and J.-Y. Sire. 1998. Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. European Journal of Oral Sciences 106 (Suppl. 1): 437-481.
  • Huysseune, A., and I. Thesleff. 2004. Continuous tooth replacement: The possible involvement of epithelial stem cells. Bioessays 26: 665-671.
  • Jarvinen, E., M. Tummers, and I. Thesleff. 2009. The role of the dental lamina in mammalian tooth replacement. Journal of Experimental Zoology B, Molecular and Developmental Evolution 312B: 281- 291.
  • Jernvall, J., and I. Thesleff. 2012. Tooth shape formation and tooth renewal: Evolving with the same signals. Development 139 (19): 3487-3497.
  • Jernvall, J., S.V.E. Keranen, and I. Thesleff. 2000. Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proceedings of the National Academy of Sciences of the United States of America 97: 14444-14448.
  • Ji, Q., P.J. Currie, M.A. Norell, and S.A. Ji. 1998. Two feathered dinosaurs from northeastern China. Nature 393: 753-761.
  • Ji, Q., L.M. Chiappe, and S.A. Ji. 1999. A new Late Mesozoic confuciusornithid bird from China. Journal of Vertebrate Paleontology 19: 1-7.
  • Ji, Q., et al. 2002. Discovery of an avialae bird - Shenzhouraptor sinensis gen. et sp. nov - from China. Geological Bulletin of China 21: 363-369.
  • Ji, Q., et al. 2003 An early ostrich dinosaur and implications for ornithomimosaur phylogeny. American Museum Novitates 3420: 1-19.
  • Ji, Q., J.C. Lu, X.F. Wei, and X.R. Wang. 2012. A new oviraptorosaur from the Yixian Formation of Jianchang, Western Liaoning Province, China. Geological Bulletin of China 31: 2102-2107.
  • Jussila, M., and I. Thesleff. 2012. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harbor Perspectives in Biology 4: a008425.
  • Jussila, M., X. Crespo Yanez, and I. Thesleff. 2014. Initiation of teeth from the dental lamina in the ferret. Differentiation 87: 32-43.
  • Kaye, T.G., et al. 2019. Fully fledged enantiornithine hatchling revealed by Laser-Stimulated Fluorescence supports precocial nesting behavior. Scientific Reports 9: 5006.
  • Kobayashi, Y., and R. Barsbold. 2005. Anatomy of Harpymimus okladnikovi Barsbold and Perle 1984 (Dinosauria, Theropoda) of Mongolia. In Carpenter, K. (editor) The carnivorous dinosaurs: 97-126. Indianapolis: Indiana University Press.
  • Kobayashi, Y., and J.C. Lu. 2003. A new ornithomimid dinosaur with gregarious habits from the Late Cretaceous of China. Acta Palaeontologia Polonica 48: 235-259.
  • Kobayashi, Y., et al. 1999. Palaeobiology: Herbivorous diet in an ornithomimid dinosaur. Nature 402: 480- 481.
  • Kollar, E., and C. Fisher. 1980. Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science 207: 993-995.
  • Kundrat, M., A.R.I. Cruickshank, T.W. Manning, and J. Nudds. 2008. Embryos of therizinosauroid theropods from the Upper Cretaceous of China: diagnosis and analysis of ossification patterns. Acta Zoologica 89: 231-251.
  • Kurochkin, E.N., S. Chatterjee, and K.E. Mikhailov. 2013. An embryonic enantiornithine bird and associated eggs from the Cretaceous of Mongolia. Paleontological Journal 47: 1252-1269.
  • Lamanna, M.C., H.-D. Sues, E.R. Schachner, and T.R. Lyson. 2014. A new large-bodied oviraptorosaurian theropod dinosaur from the Latest Cretaceous of western North America. PLoS One 9: e92022.
  • Lamichhaney, S., et al. 2015. Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature 518: 371-375.
  • Lamichhaney, S., et al. 2016. A beak size locus in Darwin's finches facilitated character displacement during a drought. Science 352: 470-474.
  • Larson, D.W., C.M. Brown, and D.C. Evans. 2016. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Current Biology 26: 1325-1333.
  • Lautenschlager, S., L.M. Witmer, P. Altangerel, and E.J. Rayfield. 2013. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Proceedings of the National Academy of Sciences of the United States of America 110: 20657-20662.
  • Lee, Y.-N., et al. 2014a. Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus. Nature 515: 257-260.
  • Lee, M.S.Y., A. Cau, D. Naish, and G.J. Dyke. 2014b. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345: 562-566.
  • Li, C., X.C. Wu, O. Rieppel, L.T. Wang, and L.J Zhao. 2008. An ancestral turtle from the Late Triassic of southwestern China. Nature 456: 497.
  • Li, C., N.C. Fraser, O. Rieppel, and X.C. Wu. 2018. A Triassic stem turtle with an edentulous beak. Nature 560: 476-479.
  • Li, L., J.Q. Wang, X. Zhang, and S.L. Hou. 2012. A new enantiornithine bird from the Lower Cretaceous Jiufotang Formation in Jinzhou Area, western Liaoning Province, China. Acta Geologica Sinica - English Edition 86: 1039-1044.
  • Li, Z.H., Z.H. Zhou, M. Wang, and J.A. Clarke. 2014. A new specimen of large-bodied basal Enantiornithine Bohaiornis from the Early Cretaceous of China and the inference of feeding ecology in Mesozoic birds. Journal of Paleontology 88: 99-108.
  • Liu, D., et al. 2014. An advanced, new long-legged bird from the Early Cretaceous of the Jehol Group (northeastern China): Insights into the temporal divergence of modern birds. Zootaxa 3884: 253- 266.
  • Longrich, N.R., K. Barnes, S. Clark, and L. Millar. 2013. Caenagnathidae from the Upper Campanian Aguja Formation of West Texas, and a revision of the Caenagnathinae. Bulletin of the Peabody Museum of Natural History 54: 23-49.
  • Louchart, A., and L. Viriot. 2011. From snout to beak: The loss of teeth in birds. Trends in Ecology and Evolution 26: 663-673.
  • Luo, Z.X., Z. Kielan-Jaworowska, and R.L. Cifelli. 2004. Evolution of dental replacement in mammals. Bulletin of Carnegie Museum of Natural History 36: 159-175.
  • Makovicky, P.J., Y. Kobayashi, and P.J. Currie. 2004. Ornithomimosauria. In D.B. Weishampel, P. Dodson, and H. Osmolska (editors), The Dinosauria: 137-150. Berkeley: University of California Press.
  • Mallarino, R., et al. 2011. Two developmental modules establish 3D beak-shape variation in Darwin's finches. Proceedings of the National Academy of Sciences of the United States of America 108: 4057- 4062.
  • Manger, P.R., L.S. Hall, and J.D. Pettigrew. 1998. The development of the external features of the platypus (Ornithorhynchus anatinus). Philosophical Transactions of the Royal Society of London B, Biological Sciences 353: 1115-1125.
  • Marsh, O.C. 1872a. Notice of a new reptile from the Cretaceous. American Journal of Science 4: 406.
  • Marsh, O.C. 1872b. Notice of a new and remarable fossil bird. American Journal of Science 4: 344.
  • Marsh, O.C. 1875. Odontornithes, or birds with teeth. American Naturalist 9: 625-631.
  • Martin, L.D., and J.D. Stewart. 1977. Teeth in Ichthyornis (Class: Aves). Science 195: 1331-1332.
  • Martin, L.D., and Z.H. Zhou. 1997. Archaeopteryx -like skull in Enantiornithine bird. Nature 389: 556.
  • Mayr, G., and D. Rubilar-Rogers. 2010. Osteology of a new giant bony-toothed bird from the Miocene of Chile, with a revision of the taxonomy of neogene pelagornithidae. Journal of Vertebrate Paleontology 30: 1313-1330.
  • Meredith, R.W., G.J. Zhang, M.T.P. Gilbert, E.D. Jarvis, and M.S. Springer. 2014. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346: 1254390.
  • Miller, W.A., and C.J.P. Radnor. 1970. Tooth replacement patterns in young Caiman sclerops. Journal of Morphology 130: 501-509.
  • Mitsiadis, T.A., Y. Cheraud, P. Sharpe, and J. Fontaine- Perus. 2003. Development of teeth in chick embryos after mouse neural crest transplantations. Proceedings of the National Academy of Sciences of the United States of America 100: 6541-6545.
  • Mochizuki, K., and S. Fujui. 1983. Development and replacement of upper jaw teeth in gobiid fish, Sicyopterus japonicus. Japanese Journal of Ichthyology 30: 27-36.
  • Musser, A.M., and M. Archer. 1998. New information about the skull and dentary of the Miocene platypus Obdurodon dicksoni, and a discussion of ornithorhynchid relationships. Philosophical Transactions of the Royal Society of London B, Biological Sciences 353: 1063-1079.
  • Nopcsa, F. 1907 Ideas on the origin of flight. Proceedings of the Zoological Society of London: 223-238.
  • Norell, M.A., et al. 1994. A theropod dinosaur embryo and the affinities of the flaming cliffs dinosaur eggs. Science 266: 779-782.
  • Norell, M.A., P.J. Makovicky, and P.J. Currie. 2001a. The beaks of ostrich dinosaurs. Nature 412: 873-874.
  • Norell, M.A., J.M. Clark, and L.M. Chiappe. 2001b. An embryonic oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of Mongolia. American Museum Novitates 3315: 1-17.
  • O'Connor, J.K., and G. Dyke. 2010. A reassessment of Sinornis santensis and Cathayornis yandica (Aves: Enantiornithes). Records of the Australian Museum 62: 7-20.
  • O'Connor, J.K., et al. 2009. Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species. Journal of Vertebrate Paleontology 29: 188-204.
  • O'Connor, J.K., K.Q. Gao, and L.M. Chiappe. 2010. A new ornithuromorph (Aves: Ornithothoraces) bird from the Jehol Group indicative of higher-level diversity. Journal of Vertebrate Paleontology 30: 311-321.
  • O'Connor, J.K., C.K. Sun, X. Xu, X.L. Wang, and Z.H. Zhou. 2012. A new species of Jeholornis with complete caudal integument. Historical Biology 24: 29-41.
  • O'Connor, J.K., et al. 2016. An enantiornithine with a fan-shaped tail, and the evolution of the rectricial complex in early birds. Current Biology 26: 114-119.
  • O'Connor, J.K., et al. 2018. First report of gastroliths in the Early Cretaceous basal bird Jeholornis. Cretaceous Research 84: 200-208.
  • Osborn, J.W. 1970. New approach to Zahnreihen. Nature 225: 343-346.
  • Osborn, J.W. 1971. The ontogeny of tooth succession in Lacerta vivipara Jacquin (1787). Proceedings of the Royal Society of London B, Biological Sciences 179: 261-289.
  • Osborn, J.W. 1977. The interpretation of patterns in dentitions. Biological Journal of the Linnean Society 9: 217-229.
  • Osmolska, H., P.J. Currie, and R. Barsbold. 2004. Oviraptorosauria. In D.B. Weishampel, P. Dodson, and H. Osmolska (editors), The Dinosauria: 165-183. Berkeley: University of California Press.
  • Owen, R. 1863a. III. On the Archeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Philosophical Transactions of the Royal Society of London 153: 33-47.
  • Owen, R. 1863b. On the fossil remains of a long-tailed bird (Archeopteryx macrurus Ow.) from the lithographic slate of Solenhofen. Proceedings of the Royal Society of London 12: 272-273.
  • Perez-Moreno, B.P., et al. 1994. A unique multitoothed ornithomimosaur dinosaur from the Lower Cretaceous of Spain. Nature 370: 363-367.
  • Peteya, J.A., J.A. Clarke, Q.G. Li, K.Q. Gao, and M.D. Shawkey. 2017. The plumage and colouration of an enantiornithine bird from the Early Cretaceous of China. Palaeontology 60: 55-71.
  • Peyer, B. 1968. Comparative odontology. Chicago: University of Chicago Press.
  • Podos, J., and S. Nowicki. 2004. Beaks, adaptation, and vocal evolution in Darwin's finches. BioScience 54: 501-510.
  • Psujek, S., and R.D. Beer. 2008. Developmental bias in evolution: evolutionary accessibility of phenotypes in a model evo-devo system. Evolution and Development 10: 375-390.
  • Pu, H.Y., et al. 2013a. An unusual basal therizinosaur dinosaur with an ornithischian dental arrangement from northeastern China. PLoS One 8: e63423.
  • Pu, H.Y., et al. 2013b. A new juvenile specimen of Sapeornis (Pygostylia: Aves) from the Lower Cretaceous of northeast China and allometric scaling of this basal bird. Paleontological Research 17: 27-38.
  • Rhodin, A.G.J., et al. 2017. Turtles of the world-annotated ckecklist and atlas of taxonomy, synonymy, distribution, and conservation status (8th ed.). Chelonian Research Monographs 7: 1-291.
  • Richman, J.M., and G.R. Handrigan. 2011. Reptilian tooth development. Genesis 49: 247-260.
  • Richman, J.M., and S.H. Lee. 2003. About face: Signals and genes controlling jaw patterning and identity in vertebrates. BioEssays 25: 554-568.
  • Romanoff, A.L. 1960. The avian embryo: structural and functional development. New York: Macmillan Company.
  • Rose, C. 1893a. Uber die zahnentwicklung der Krokodile. Gegenbaurs Morphologisches Jahrbuch 3: 195-228.
  • Rose, C. 1893b. Uber die Zahnentwicklung von Chamaeleon. Anatomischer Anzeiger 9: 439-451.
  • Rougier, G.W., J.R. Wible, and M.J. Novacek. 1998. Implications of Deltatheridium specimens for early marsupial history. Nature 396: 459-463.
  • Sanz, J.L., et al. 1997. A nestling bird from the Lower Cretaceous of Spain: implications for avian skull and neck evolution. Science 276: 1543-1546.
  • Schneider, R.A., and J.A. Helms. 2003. The cellular and molecular origins of beak morphology. Science 299: 565-568.
  • Seeley, H.G. 1901. Dragons of the air: An account of extinct flying reptiles. New York: D. Appleton & Methuen.
  • Sire, J.-Y., S.C. Delgado, and M. Girondot. 2008. Hen's teeth with enamel cap: from dream to impossibility. BMC Evolutionary Biology 8: 246.
  • Smith, M.M., G.J. Fraser, and T.A. Mitsiadis. 2009. Dental lamina as source of odontogenic stem cells: evolutionary origins and developmental control of tooth generation in gnathostomes. Journal of Experimental Zoology B, Molecular and Developmental Evolution 312B: 260-280.
  • St. Hilarie, G. 1821. Sur le system dentaire des oiseaux. Annales Generales des Sciences Physiques 8: 373- 380.
  • Streelman, J.T., J.F. Webb, R.C. Albertson, and T.D. Kocher. 2003. The cusp of evolution and development: a model of cichlid tooth shape diversity. Evolution and Development 5: 600-608.
  • Temeles, E.J., J.S. Miller, and J.L. Rifkin. 2010. Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): A role for ecological causation. Philosophical Transactions of the Royal Society of London B, Biological Sciences 365: 1053-1063.
  • Thesleff, I. 2003. Epithelial-mesenchymal signalling regulating tooth morphogenesis. Journal of Cell Science 116: 1647-1648.
  • Thomas, O. 1889. On the dentition of Ornithorhynchus. Proceedings of the Royal Society of London 46: 126-131.
  • Tsai, S., et al. 2016. The molecular circuit regulating tooth development in crocodilians. Journal of Dental Research 95: 1501-1510.
  • Tsuihiji, T., M. Watabe, R. Barsbold, and K. Tsogtbaatar. 2015. A gigantic caenagnathid oviraptorosaurian (Dinosauria: Theropoda) from the Upper Cretaceous of the Gobi Desert, Mongolia. Cretaceous Research 56: 60-65.
  • Tsuihiji, T., M. Watabe, K. Tsogtbaatar, and R. Barsbold. 2016. Dentaries of a caenagnathid (Dinosauria: Theropoda) from the Nemegt Formation of the Gobi Desert in Mongolia. Cretaceous Research 63: 148-153.
  • Vogel, P., et al. 2014. Malformation of incisor teeth in Grem2-/- mice. Veterinary Pathology 52: 224-229.
  • von Meyer, H. 1861. Vogel-Feder und Palpipes priscus von Solenhofen. Neues Jahrbuch fur Mineralogie, Geognosie, Geologie und Petrefakten-Kunde 1861: 561.
  • von Meyer, H. 1862. Archaeopteryx lithographica aus dem lithographischen Schiefer von Solnhofen. Palaeontographica 10: 53-56.
  • Wang, M., and D. Liu. 2016. Taxonomical reappraisal of Cathayornithidae (Aves: Enantiornithes). Journal of Systematic Palaeontology 14: 29-47.
  • Wang, M., J.K. O'Connor, S. Zhou, and Z.H. Zhou. 2019. New toothed early cretaceous ornithuromorph bird reveals intraclade diversity in pattern of tooth loss. Journal of Systematic Palaeontology: 1-15.
  • Wang, M., and Z.H. Zhou. 2016. A new adult specimen of the basalmost ornithuromorph bird Archaeorhynchus spathula (Aves: Ornithuromorpha) and its implications for early avian ontogeny. Journal of Systematic Palaeontology 14: 1-18.
  • Wang, M., and Z.H. Zhou. 2018. A new confuciusornithid (Aves: Pygostylia) from the Early Cretaceous increases the morphological disparity of the Confuciusornithidae. Zoological Journal of the Linnean Society 28: 1-14.
  • Wang, M., Z.H. Zhou, J.K. O'Connor, and N.V. Zelenkov. 2014b. A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species. Vertebrata PalAsiatica 52: 31-76.
  • Wang, S., Q.Y. Zhang, and R. Yang. 2018. Reevaluation of the dentary structures of caenagnathid oviraptorosaurs (Dinosauria, Theropoda). Scientific Reports 8: 391.
  • Wang, S., S.K. Zhang, C. Sullivan, and X. Xu. 2016. Elongatoolithid eggs containing oviraptorid (Theropoda, Oviraptorosauria) embryos from the Upper Cretaceous of southern China. BMC Evolutionary Biology 16: 67.
  • Wang, S., et al. 2017a. Heterochronic truncation of odontogenesis in theropod dinosaurs provides insight into the macroevolution of avian beaks. Proceedings of the National Academy of Sciences of the United States of America 114: 10930-10935.
  • Wang, S., et al. 2017b. Extreme ontogenetic changes in a ceratosaurian theropod. Current Biology 27: 144- 147.
  • Wang, X.L., and Z.H. Zhou. 2004. Pterosaur embryo from the Early Cretaceous. Nature 429: 621.
  • Wang, X.L., et al. 2014a. Insights into the evolution of rachis dominated tail feathers from a new basal enantiornithine (Aves: Ornithothoraces). Biological Journal of the Linnean Society 113: 805-819.
  • Wang, Y., et al. 2017c. A previously undescribed specimen reveals new information on the dentition of Sapeornis chaoyangensis. Cretaceous Research 74: 1-10.
  • Wang, X.L., et al. 2017d. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur. Science 358: 1197-1201.
  • Watabe, M., D. Weishampel, R. Barsbold, K. Tsogtbataar, and S. Suzuki. 2000. New nearly complete skeleton of the bird-like theropod, Avimimus, from the Upper Cretaceous of the Gobi Desert, Mongolia. Journal of Vertebrate Paleontology 20: 77A.
  • Wellnhofer, P. 2009. Archaeopteryx: The icon of evolution, Munchen: Verlag Dr. Friedrich Pfeil.
  • Wellnhofer, P. 2010. A short history of research on Archaeopteryx and its relationship with dinosaurs. In R.T.J. Moody, E. Buffetaut, D. Naish, and D.M. Martill (editors), Dinosaurs and other extinct saurians: a historical perspective: London: Geological Society Publishing House.
  • Westergaard, B., and M.W.J. Ferguson. 1987. Development of the dentition in Alligator mississippiensis. Later development in the lower jaws of embryos, hatchlings and young juveniles. Journal of Zoology 212: 191-222.
  • Westergaard, B., and M.W.J. Ferguson. 1990. Development of the dentition in Alligator mississippiensis: Upper jaw dental and craniofacial development in embryos, hatchlings, and young juveniles, with a comparison to lower jaw development. American Journal of Anatomy 187: 393-421.
  • Whitlock, J.A., and J.M. Richman. 2013. Biology of tooth replacement in amniotes. International Journal of Oral Science 5: 66-70.
  • Woerdeman, M.W. 1919a. Beitrage zur Entwicklungsgeschichte von Zahnen und Gebiss der Reptilien. I. Die Anlage und Entwicklung des embryonalen Gebisses als ganzes und seine Beziehung zur Zahnleiste. Archiv fur Mikroskopische Anatomie 92: 104-182.
  • Woerdeman, M.W. 1919b. Beitrage zur Entwicklungsgeschichte von Zahnen und Gebiss der Reptilien. II. Ueber die Anlage des Ersatzgebisses und den Zahnwechsel (distichie- und matrix-Theorie). Archiv fur Mikroskopische Anatomie 92: 183-230.
  • Woerdeman, M.W. 1921a. Beitrage zur Entwicklungsgeschichte von Zahnen und Gebiss der Reptilien. Beitrage V. UÑ‘ber der Mundhohlendrusen zum Zahnsystem. Archiv fur Mikroskopische Anatomie 95: 396-413.
  • Woerdeman, M.W. 1921b. Beitrage zur Entwicklungsgeschichte von Zahnen und Gebiss der Reptilien. Beitrage IV. UÑ‘ber die Anlage und Ersatzgebiss der Zahnen. Archiv fur Mikroskopische Anatomie 95: 265-395.
  • Wu, P., T.X. Jiang, S. Suksaweang, R.B. Widelitz, and C.M. Chuong. 2004a. Molecular shaping of the beak. Science 305: 1465-1466.
  • Wu, P., et al. 2004b. Evo-devo of amniote integuments and appendages. International Journal of Developmental Biology 48: 249-270.
  • Wu, P., T.X. Jiang, J.Y. Shen, R.B. Widelitz, and C.M. Chuong. 2006. Morphoregulation of avian beaks: Comparative mapping of growth zone activities and morphological evolution. Developmental Dynamics 235: 1400-1412.
  • Wu, P., et al. 2013. Specialized stem cell niche enables repetitive renewal of alligator teeth. Proceedings of the National Academy of Sciences of the United States of America 110: E2009-2018.
  • Wu, P., et al. 2015. Topographical mapping of α- and β-keratins on developing chicken skin integuments: functional interaction and evolutionary perspectives. Proceedings of the National Academy of Sciences of the United States of America 112: E6770-E6779.
  • Xing, L.D., et al. 2017. A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Research 49: 264-277.
  • Xu, X., X.J. Zhao, and J.M. Clark. 2001. A new therizinosaur from the Lower Jurassic Lower Lufeng Formation of Yunnan, China. Journal of Vertebrate Paleontology 21: 477-483.
  • Xu, X., Y.N. Cheng, X.L. Wang, and C.H. Chang. 2002. An unusual oviraptorosaurian dinosaur from China. Nature 419: 291-293.
  • Xu, X., Q.W. Tan, J.M. Wang, X.J. Zhao, and L. Tan. 2007. A gigantic bird-like dinosaur from the Late Cretaceous of China. Nature 447: 844-847.
  • Xu, X., et al. 2015. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521: 70-73.
  • Yang, T.R., and P.M. Sander. 2018. The origin of the bird's beak: New insights from dinosaur incubation periods. Biology Letters 14: 20180090.
  • Yao, X., et al. 2015. Caenagnathasia sp. (Theropoda: Oviraptorosauria) from the Iren Dabasu Formation (Upper Cretaceous: Campanian) of Erenhot, Nei Mongol, China. Vertebrata PalAsiatica 53: 291-298.
  • Zahradnicek, O., I. Horacek, and A.S. Tucker. 2012. Tooth development in a model reptile: Functional and null generation teeth in the gecko Paroedura picta. Journal of Anatomy 221: 195-208.
  • Zanno, L.E. 2010. Osteology of Falcarius utahensis (Dinosauria: Theropoda): Characterizing the anatomy of basal therizinosaurs. Zoological Journal of the Linnean Society 158 (1): 196-230.
  • Zanno, L.E., and P.J. Makovicky. 2011. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proceedings of the National Academy of Sciences of the United States of America 108: 232-237.
  • Zhang, F.C., Z.H. Zhou, L.H. Hou, and G. Gu. 2001. Early diversification of birds: evidence from a new opposite bird. Chinese Science Bulletin 46: 945-949.
  • Zhang, F.C., Z.H. Zhou, X. Xu, and X.L. Wang. 2002. A juvenile coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89: 392-398.
  • Zhang, F.C., Z.H. Zhou, X. Xu, X.L. Wang, and C. Sullivan. 2008a. A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455: 1105.
  • Zhang, F.C., Z.H. Zhou, and M.J. Benton. 2008b. A primitive confuciusornithid bird from China and its implications for early avian flight. Science in China Series D: Earth Sciences 51: 625-639.
  • Zheng, X.T., et al. 2011. Fossil evidence of avian crops from the Early Cretaceous of China. Proceedings of the National Academy of Sciences of the United States of America 108: 15904-15907.
  • Zheng, X.T., et al. 2014. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS One 9: e95036-e95036.
  • Zheng, X.T., J.K. O'Connor, X.L. Wang, Y. Wang, and Z. Zhou. 2018. Reinterpretation of a previously described Jehol bird clarifies early trophic evolution in the Ornithuromorpha. Proceedings of the Royal Society B, Biological Sciences 285: 20172494.
  • Zhou, S., Z.H. Zhou, and J.K. O'Connor. 2012 A new basal beaked ornithurine bird from the Lower Cretaceous of Western Liaoning, China. Vertebrata PalAsiatica 50: 9-24.
  • Zhou, S., Z.H. Zhou, and J.K. O'Connor. 2013. Anatomy of the basal ornithuromorph bird Archaeorhynchus spathula from the Early Cretaceous of Liaoning, China. Journal of Vertebrate Paleontology 33: 141- 152.
  • Zhou, S., J.K. O'Connor, and M. Wang. 2014. A new species from an ornithuromorph (Aves: Ornithothoraces) dominated locality of the Jehol Biota. Chinese Science Bulletin 59: 5366-5378.
  • Zhou, Y.C. 2015. Teeth morphology, teeth weight and dentition morphology of Mesozoic birds. Master's thesis, University of Chinese Academy of Sciences, Beijing.
  • Zhou, Y.C., C. Sullivan, and F.C. Zhang. 2019. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vertebrata PalAsiatica 57: 38-50.
  • Zhou, Z.H., and L.D. Martin. 2011. Distribution of the predentary bone in Mesozoic ornithurine birds. Journal of Systematic Palaeontology 9: 25-31.
  • Zhou, Z.H., and F.C. Zhang. 2001. Two new ornithurine birds from the Early Cretaceous of western Liaoning, China. Chinese Science Bulletin 46: 1258-1264.
  • Zhou, Z.H., and F.C. Zhang. 2002. A long-tailed, seedeating bird from the Early Cretaceous of China. Nature 418: 405-409.
  • Zhou, Z.H., and F.C. Zhang. 2003b. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Canadian Journal of Earth Sciences 40: 731-747.
  • Zhou, Z.H., and F.C. Zhang. 2003a. Jeholornis compared to Archaeopteryx, with a new understanding of the earliest avian evolution. Naturwissenschaften 90: 220-225.
  • Zhou, Z.H., and F.C. Zhang. 2004. A precocial avian embryo from the Lower Cretaceous of China. Science 306: 653-653.
  • Zhou, Z.H., and F.C. Zhang. 2006. A beaked basal ornithurine bird (Aves, Ornithurae) from the Lower Cretaceous of China. Zoologica Scripta 35: 363-373.
  • Zhou, Z.H., X.L. Wang, F.C. Zhang, and X. Xu. 2000. Important features of Caudipteryx-evidence from two nearly complete new specimens. Vertebrata PalAsiatica 38: 241-254.
  • Zhou, Z.H, F.C. Zhang, and Z.H. Li. 2009. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proceedings of the Royal Society B, Biological Sciences 277: 219-227.
  • Ziegler, A.C. 1971. A theory of the evolution of therian dental formulas and replacement patterns. Quarterly Review of Biology 46: 226-249.